INFORME DE SEGUIMIENTO DEL PLAN HIDROLÓGICO

Año 2023

Demarcación Hidrográfica del Cantábrico Oriental

Diciembre de 2024

Índice

1.	Intro	DUCCIÓN	1
2.	Áмвіт	TO TERRITORIAL	2
3.	Evol	UCIÓN DE LOS RECURSOS HÍDRICOS NATURALES Y DISPONIBLES	3
	3.1	Recursos hídricos naturales	4
	3.2	Recursos hídricos no convencionales	18
	3.3	Recursos hídricos externos	19
4.	Evol	UCIÓN DE LOS USOS Y DEMANDAS DE AGUA	21
	4.1	Uso urbano	21
	4.2	Uso industrial	23
	4.3	Uso agrario	24
	4.4	Usos consuntivos globales	24
	4.5	Uso hidroeléctrico	25
5.	GRAD	O DE CUMPLIMIENTO DE LOS REGÍMENES DE CAUDALES ECOLÓGICOS	26
	5.1	Metodología	26
	5.2	Resultados obtenidos	27
6.	ESTAI	DO DE LAS MASAS DE AGUA SUPERFICIAL Y SUBTERRÁNEA	29
	6.1	Programas de seguimiento	29
	6.2	Masas de agua superficial	31
	6.3	Masas de agua subterránea	41
	6.4	Zonas protegidas	43
	6.5	Registro de las situaciones de deterioro temporal del estado de masas de agua	
	6.6	Registro de nuevas modificaciones o alteraciones	46
7.	INUND	ACIONES	47
	7.1	Principales eventos en el año 2023	48
8.	SEQU	ÍAS	50
	8.1	Indicadores de sequía prolongada	50
	8.2	Indicadores de escasez	51
	8.3	Eventos de sequía en el año 2022/23	52
9.	APLIC	ACIÓN DE LOS PROGRAMAS DE MEDIDAS	53
	9.1	Resumen de la aplicación de los programas de medidas en el 2023	

9.2	administración competente5	
9.3	Aplicación de los programas de medidas en el año 2023 por tipos di medidas	
10. А сти	ALIZACIÓN DEL REGISTRO DE ZONAS PROTEGIDAS6	30
11. SEGUI	IMIENTO AMBIENTAL	35
	Índice de figuras	
Figura 1	Ámbito territorial de la demarcación	. 2
Figura 2	Cuencas compartidas con Francia	. 3
Figura 3	Sistemas de explotación de la Demarcación Hidrográfica del Cantábrico Oriental	. 4
Figura 4	Estaciones de control de la evolución de los recursos hídricos. Se indican las estaciones seleccionadas para representar la evolución de la situación	. 4
Figura 5	Evolución de la precipitación de la estación de Abusu (C0B1) (Fuente: Euskalmet)	. 6
Figura 6	Evolución de la precipitación de la estación de Berriatua (C0BE) (Fuente: Euskalmet).	. 6
Figura 7	Evolución de la precipitación de la estación de Altzola (C078) (Fuente: Euskalmet).	. 6
Figura 8	Evolución de la precipitación de la estación de Oiartzun (C0F4) (Fuente: Euskalmet).	. 7
Figura 9	Evolución de la temperatura de la estación de Abusu (C0B1) (Fuente: Euskalmet)	. 7
Figura 10	Evolución de la temperatura de la estación de Berriatua (C0BE) (Fuente: Euskalmet).	. 8
Figura 11	Evolución de la temperatura de la estación de Altzola (C078) (Fuente: Euskalmet)	. 8
Figura 12	Evolución de la temperatura de la estación de Oiartzun (C0F4) (Fuente: Euskalmet).	. 8
Figura 13	Aportación media en la demarcación	. 9
Figura 14	Evolución de la aportación en la estación Balmaseda (C0C2) (Fuente: Agencia Vasca del Agua-D.F. de Bizkaia)	. 9
Figura 15	Evolución de la aportación en la estación Abusu (C0B1) (Fuente: Agencia Vasca del Agua- D. Foral de Bizkaia)	. 9
Figura 16	Evolución de la aportación en la estación Gatika (C005) (Fuente:	10

Pág.ii Índice

Figura 17	Evolución de la aportación en la estación Arenao (C0C5) (Fuente: Agencia Vasca del Agua- D. Foral de Bizkaia)1
Figura 18	Evolución de la aportación en la estación Muxika (C063) (Fuente: Agencia Vasca del Agua- D. Foral de Bizkaia)10
Figura 19	Evolución de la aportación en la estación Oleta (C0BA) (Fuente: Agencia Vasca del Agua- D. Foral de Bizkaia)10
Figura 20	Evolución de la aportación en la estación Berriatua (C0BE) (Fuente: Agencia Vasca del Agua- D.F. de Bizkaia)1
Figura 21	Evolución de la aportación en la estación Altzola (C078) (Fuente: Diputación Foral de Gipuzkoa)1
Figura 22	Evolución de la aportación en la estación Aizarnazabal (C0DD) (Fuente: Diputación Foral de Gipuzkoa)1
Figura 23	Evolución de la aportación en la estación Lasarte (C0EC) (Fuente: Diputación Foral de Gipuzkoa)1
Figura 24	Evolución de la aportación en la estación Ereñozu (C0F0) (Fuente: Diputación Foral de Gipuzkoa)12
Figura 25	Evolución de la aportación en la estación Oiartzun (C0F4) (Fuente: Diputación Foral de Gipuzkoa)12
Figura 26	Evolución de la aportación en la estación Endarlaza (1106) (Fuente: Confederación Hidrográfica del Cantábrico)
Figura 27	Evolución de niveles en la estación Mañaria-2 (SP07) (Fuente: Agencia Vasca del Agua)13
Figura 28	Evolución de niveles en la estación Gallandas-1 (SP19) (Fuente: Agencia Vasca del Agua)13
Figura 29	Evolución de niveles en la estación Tole (SP09) (Fuente: Agencia Vasca del Agua)
Figura 30	Evolución de niveles en la estación Olalde-B (SP06) (Fuente: Agencia Vasca del Agua)
Figura 31	Evolución de niveles en la estación Kilimon-3 (SP11) (Fuente: Agencia Vasca del Agua-Diputación Foral de Gipuzkoa)14
Figura 32	Evolución de niveles en la estación DTH-1 (SP22) (Fuente: Agencia Vasca del Agua-Diputación Foral de Gipuzkoa)14
Figura 33	Evolución de niveles en la estación Elduaien-3 (SP10) (Fuente: Agencia Vasca del Agua-Diputación Foral de Gipuzkoa)14
Figura 34	Evolución de niveles en la estación Jaizkibel-5 (SP24) (Fuente: Agencia Vasca del Agua-Diputación Foral de Gipuzkoa)15
Figura 35	Evolución de volúmenes en el embalse de Ordunte (Fuente: Confederación Hidrográfica del Cantábrico-Agencia Vasca del Agua).
Figura 36	Evolución de volúmenes en el embalse de Aixola (Fuente: Consorcio de Aguas de Gipuzkoa).
Figura 37	Evolución de volúmenes en el embalse de Urkulu (Fuente: Consorcio de Aguas de Gipuzkoa).

Índice

Pág.iii

Figura 38	Evolución de volúmenes en el embalse de Barrendiola (Fuente: Consorcio de Aguas de Gipuzkoa)	16
Figura 39	Evolución de volúmenes en el embalse de Arriaran (Fuente: Consorcio de Aguas de Gipuzkoa)	16
Figura 40	Evolución de volúmenes en el embalse de Ibaieder (Fuente: Consorcio de Aguas de Gipuzkoa)	16
Figura 41	Evolución de volúmenes en el embalse de Ibiur (Fuente: Consorcio de Aguas de Gipuzkoa).	17
Figura 42	Evolución de volúmenes en el embalse de Añarbe (Fuente: Confederación Hidrográfica del Cantábrico – Agencia Vasca del Agua)	17
Figura 43	Evolución de volúmenes en el embalse de San Antón (Fuente: Servicios de Txingudi, S.A.).	17
Figura 44	Reutilización de agua	18
Figura 45	Evolución de la reutilización de agua en la EDAR de Galindo (Fuente: Consorcio de Aguas Bilbao Bizkaia).	19
Figura 46	Evolución de la reutilización de agua en Petronor (Muskiz) (Fuente: Petronor).	19
Figura 47	Principales trasvases	20
Figura 48	Demandas de agua según procedencia de redes urbanas y tomas propias	21
Figura 49	Consumos de agua en alta para abastecimiento urbano en la Demarcación.	21
Figura 50	Evolución de la población en la demarcación (Fuentes: Eustat, Nastat, Centro de datos estadísticos de Castillo y León)	22
Figura 51	Volumen suministrado desde la ETAP de Venta Alta (Fuente: Consorcio de Aguas Bilbao Bizkaia).	22
Figura 52	Volumen servido por Kantauriko Urkidetza (Fuente: Kantauriko Urkidetza)	22
Figura 53	Volumen de entrada a la ETAP de Elordi (Fuente: Servicios de Txingudi)	23
Figura 54	Volumen suministrado por Aguas del Añarbe (Fuente:Aguas del Añarbe)	23
Figura 55	Consumo en alta (l/hab/día) en los municipios del Consorcio de Aguas de Gipuzkoa (Fuente: Consorcio de Aguas de Gipuzkoa)	23
Figura 56	Volumen de entrada a las ETAPs de Busturialdea (Fuente: Consorcio de Aguas de Busturialdea y Consorcio Aguas Bilbao Bizkaia)	23
Figura 57	Volumen consumido para uso industrial procedente de tomas propias (Fuente: Canon del agua de la CAPV)	24
Figura 58	Evolución de usos consuntivos en la demarcación, por tipo de uso	
Figura 59	Volumen turbinado (Fuente: Canon del agua de la CAPV)	25

Pág.iv Índice

Figura 60	Estaciones de aforo y aprovechamientos analizados para la evaluación del grado de cumplimiento de los caudales ecológicos en el año hidrológico 2022-2023	27
Figura 61	Evolución del porcentaje de cumplimiento del régimen de caudales ecológicos en estaciones de aforo y en aprovechamiento concretos	27
Figura 62	Grado de cumplimiento de los regímenes de caudales ecológicos en las estaciones de aforo y aprovechamientos analizados, año hidrológico 2022-2023.	28
Figura 63	Red de seguimiento del estado de las masas de agua superficial	30
Figura 64	Red de seguimiento del estado de las masas de agua subterránea	30
Figura 65	Red de seguimiento de las zonas protegidas	30
Figura 66	Estado ecológico de las masas de agua superficial. Situación de referencia 3 ^{er} ciclo de planificación.	31
Figura 67	Estado ecológico de las masas de agua superficial. Año 2023	31
Figura 68	Evolución del estado ecológico de las masas de agua superficial	32
Figura 69	Evolución del estado ecológico de las masas de agua superficial (por categoría de masa de agua).	33
Figura 70	Evolución temporal de la concentración media anual para amonio, nitrato, fosfato y saturación de oxígeno en la estación de la masa de agua de transición Oka interior en el periodo 2002 a 2023. La línea verde indica el límite entre clases de estado Bueno y Moderado	35
Figura 71	Evolución de la biomasa fitoplanctónica en la estación de la masa de agua de transición Oka interior. Líneas azules: percentil 90 de clorofila-a calculado con valores de superficie (pleamar y bajamar), de las cuatro épocas del año, en periodos móviles de seis años. La línea verde indica el límite entre clases de estado Bueno y Moderado para aguas oligohalinas.	35
Figura 72	Evolución de condiciones fisicoquímicas generales y de indicadores biológicos (macroinvertebrados-MB, diatomeas-IPS y fauna piscícola-CFI) en los puntos de control DEB202 (superior) y DEG068 (inferior). Valores normalizados con respecto a la referencia de buen estado	36
Figura 73	Estado químico de las masas de agua superficial. Situación de referencia 3 ^{er} ciclo de planificación.	37
Figura 74	Estado químico de las masas de agua superficial. Año 2023	37
Figura 75	Evolución del estado químico de las masas de agua superficial	38
Figura 76	Evolución del estado químico de las masas de agua superficial (por categoría de masa de agua).	39
Figura 77	Estado global de las masas de agua superficial. Situación de referencia 3er ciclo de planificación	39
Figura 78	Estado global de las masas de agua superficial. Año 2023	40
Figura 79	Evolución del estado de las masas de agua superficial.	40
Figura 80	Evolución del estado de las masas de agua superficial (por categoría de masa de agua)	41

Índice

Figura 81	Estado cuantitativo de las masas de agua subterránea. Año 2023	42
Figura 82	Estado químico de las masas de agua subterránea. Año 2023	
Figura 83	Evolución del estado de las masas de agua subterránea. Estado cuantitativo izquierda y estado químico derecha	
Figura 84	Evolución del porcentaje de población según la calificación de la calidad del agua de consumo abastecida. Bizkaia y Gipuzkoa (Fuente: Departamento de Salud. Gobierno Vasco)	43
Figura 85	Evolución de la calidad de las zonas de baño en el periodo 2011-2023.	44
Figura 86	Clasificación de las zonas de producción de moluscos bivalvos. Año 2023.	45
Figura 87	Nivel del río Urko en la estación de Markina el 11 de septiembre de 2023.	48
Figura 88	Inundación del 11 de septiembre de 2023 en la localidad de Etxebarria.	49
Figura 89	Evolución del indicador de escasez en las unidades territoriales Oka, Lea y Artibai en el año 2022-2023	52
Figura 90	Presupuesto horizonte 2027 por tipos de medidas (izquierda) y entidades financiadoras de las medidas (derecha). Programa de Medidas de la DH del Cantábrico Oriental. PH 2022-2027	54
Figura 91	Evolución global de la aplicación del programa de medidas en el año 2023.	55
Figura 92	Inversiones previstas por el PH para el periodo 2022-2027 e inversiones ejecutadas en el año 2023, por grupos de entidades	
Figure 02	financiadoras	
Figure 93	Zonas de captación de agua superficial para abastecimiento	
Figura 94 Figura 95	Zonas de captación de agua subterránea para abastecimiento	
Figura 96	Zonas de bañoZonas de baño	
Figura 97	Zonas sensibles en aguas continentales y marinas	
Figura 98	Red Natura 2000 dependiente del medio hídrico	
Figura 99	Reservas naturales fluviales.	
J	Reservas naturales subterráneas.	
J	Patrimonio cultural ligado al agua.	
	Índice de tablas	
Tabla 1	Estaciones representativas de la evolución de los recursos hídricos	5
Tabla 2	Relación entre la Precipitación media del año hidrológico 2022-2023 y del periodo 2000-2023.	
Tabla 3	Evolución de los volúmenes reutilizados	
Tabla 4	Evolución de los volúmenes del trasvase Zadorra-Arratia	

Pág.vi Índice

Tabla 5	Evolución de los volúmenes trasvasados totales	20
Tabla 6	Demanda consuntiva actual por usos y origen	21
Tabla 7	Porcentaje de población según la calificación de la calidad del agua de consumo abastecida. Bizkaia y Gipuzkoa. (Fuente: Departamento de Salud. Gobierno Vasco)	43
Tabla 8	Calificación de las zonas de producción de moluscos bivalvos. Año 2023.	45
Tabla 9	Evolución del indicador integrado de sequía prolongada en el año 2022-2023.	51
Tabla 10	Evolución del indicador de escasez en el año 2022-2023	51
Tabla 11	Presupuesto para el horizonte 2027 por tipos de medidas. Programa de medidas de la DH del Cantábrico Oriental. PH 2022-2027	53
Tabla 12	Grado de aplicación del Programa de Medidas de la DH del Cantábrico Oriental. Año 2023	55
Tabla 13	Evaluación de los indicadores ambientales. DH del Cantábrico Oriental-Ámbito de las Cuencas Internas del País Vasco	67
Tabla 14	Evaluación de los indicadores ambientales. DH del Cantábrico Oriental-Ámbito de competencias del Estado.	68

Índice Pág.vii

1. INTRODUCCIÓN

El Real Decreto 907/2007, de 6 de julio, por el que se aprueba el Reglamento de la Planificación Hidrológica, establece en su artículo 87 que las administraciones hidráulicas realizarán el seguimiento anual de sus correspondientes planes hidrológicos.

La revisión 2022-2027 del Plan Hidrológico de la Demarcación Hidrográfica del Cantábrico Oriental fue aprobada mediante el Real Decreto 35/2023, de 24 de enero, que derogó el entonces vigente Plan Hidrológico 2015-2021.

Los artículos 88 del citado Real Decreto 907/2007 y 73 de la Normativa del Plan Hidrológico de la Demarcación Hidrográfica del Cantábrico Oriental (Anexo I del Real Decreto 35/2023) indican los aspectos generales que serán objeto de seguimiento específico:

- Evolución de los recursos hídricos naturales y disponibles y su calidad.
- Evolución de las demandas de agua.
- Grado de cumplimiento del régimen de caudales ecológicos.
- Estado de las masas de agua superficial y subterránea.
- Aplicación de los programas de medidas y efectos sobre las masas de agua.

Asimismo, el Real Decreto 907/2007 recoge en su artículo 89 ter que en los informes anuales de seguimiento de los planes hidrológicos se incluirá un resumen correspondiente al seguimiento del Plan Especial de Sequía.

Por otro lado, se ha considerado conveniente incluir adicionalmente un resumen del informe de seguimiento del Plan de Gestión del Riesgo de Inundación de la demarcación correspondiente al mismo periodo.

Finalmente, se incluye en el informe la evolución de los indicadores de seguimiento de la Evaluación Ambiental Estratégica establecidos en los Estudios Ambientales Estratégicos correspondientes a los ámbitos inter e intracomunitarios de la demarcación.

El presente informe, elaborado por la Agencia Vasca del Agua y la Confederación Hidrográfica del Cantábrico, presenta de forma sintética la información relativa al seguimiento del Plan Hidrológico de la Demarcación Hidrográfica del Cantábrico Oriental en el año 2023. Cabe precisar que el periodo de referencia utilizado para la información de carácter hidrológico es el año hidrológico 2022-2023.

El documento se estructura en 11 capítulos en los que se aborda la descripción del ámbito territorial (capítulo 2), los aspectos objeto de seguimiento específico (capítulos 3 a 9), la actualización del registro de zonas protegidas (capítulo 10) y el seguimiento ambiental establecido por la evaluación ambiental del plan (capítulo 11).

Estos capítulos incluyen enlaces a documentos más extensos, tales como los informes específicos sobre los resultados de las redes de seguimiento, donde se puede encontrar información más detallada sobre cada uno de los aspectos tratados.

2. ÁMBITO TERRITORIAL

De acuerdo con el artículo primero del Real Decreto 29/2011, de 14 de enero, por el que se modifica el Real Decreto 125/2007, de 2 de febrero, por el que se fija el ámbito territorial de las demarcaciones hidrográficas, la parte española de la Demarcación Hidrográfica del Cantábrico Oriental comprende el territorio de las cuencas hidrográficas de los ríos que vierten al mar Cantábrico desde la cuenca del Barbadun hasta la del Oiartzun, incluyendo la intercuenca entre la del arroyo de La Sequilla y la del río Barbadun, así como todas sus aguas de transición y costeras, y el territorio español de las cuencas de los ríos Bidasoa, incluyendo sus aguas de transición, Nive y Nivelle. Las aguas costeras tienen como límite oeste la línea de orientación 2º que pasa por la Punta del Covarón y como límite este la frontera entre el mar territorial de España y Francia.

La Demarcación Hidrográfica del Cantábrico Oriental incluye dos ámbitos competenciales de planificación: por un lado, las Cuencas Internas del País Vasco, cuya competencia en materia de aguas recae en la Comunidad Autónoma del País Vasco a través de la Agencia Vasca del Agua y, por otro, las cuencas intercomunitarias de la vertiente cantábrica, de competencia estatal a través de la Confederación Hidrográfica del Cantábrico.

La superficie continental de la demarcación en la parte española, incluidas las aguas de transición, es de 5812 km² (6391 km² si incluimos las masas costeras), y se extiende por 5 provincias (Bizkaia, Gipuzkoa, Navarra, Álava, y Burgos) de 3 comunidades autónomas: País Vasco, Navarra y Castilla y León. Su localización se muestra en la siguiente figura:

Figura 1 Ámbito territorial de la demarcación.

Hay que resaltar que en la Demarcación existen las siguientes cuencas compartidas con Francia: Bidasoa, Nive y Nivelle (Figura 2). La coordinación entre las administraciones de ambos países se desarrolla de acuerdo con lo establecido en el Acuerdo Administrativo entre España y Francia sobre gestión del agua, firmado en Toulouse el 15 de febrero de 2006. La superficie en territorio francés es de 1239 km², incluyendo sus correspondientes masas de agua de transición y costeras.

Pág.2 Memoria

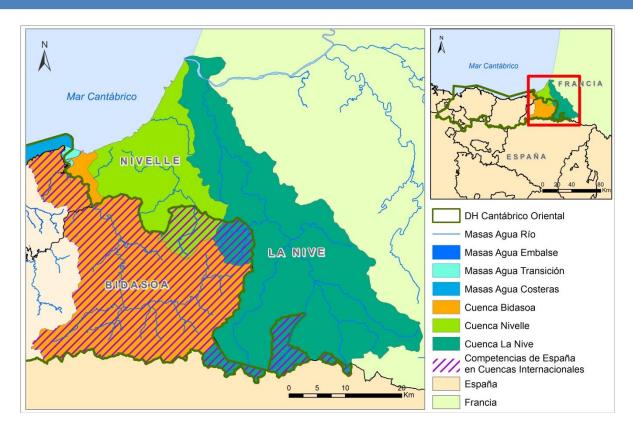


Figura 2 Cuencas compartidas con Francia.

3. EVOLUCIÓN DE LOS RECURSOS HÍDRICOS NATURALES Y DISPONIBLES

Los recursos hídricos disponibles en el ámbito de la Demarcación Hidrográfica del Cantábrico Oriental están constituidos por los recursos hídricos naturales propios (contenidos en las masas de aguas superficiales y subterráneas continentales de la demarcación), los recursos no convencionales (procedentes de la reutilización de efluentes depurados) y los externos (transferidos de otras demarcaciones).

El ámbito de la Demarcación Hidrográfica del Cantábrico Oriental se divide en 13 sistemas de explotación o unidades hidrológicas. Cada uno de estos sistemas está formado por el río principal y su estuario, así como por el conjunto de afluentes que forman una densa red fluvial de carácter permanente, a excepción del sistema Ríos Pirenaicos que se limita al territorio español de las cuencas de los ríos internacionales Nive y Nivelle. Además, los sistemas de explotación integran otros ríos menores que desembocan directamente en el mar.

A continuación, se muestran los sistemas de explotación en los que se divide el ámbito de trabajo.

Figura 3 Sistemas de explotación de la Demarcación Hidrográfica del Cantábrico Oriental.

3.1 RECURSOS HÍDRICOS NATURALES

La evolución de los recursos hídricos naturales se presenta en dos niveles. Por un lado, se muestra información referida a la precipitación, temperatura y aportación a nivel de demarcación, incluyendo la información del periodo de referencia del Plan Hidrológico 2022-2027 y añadiendo la información relativa al año hidrológico objeto de estudio (2022-2023).

Por otro lado, se presenta información más detallada de una serie de estaciones que se consideran representativas o indicativas de los sistemas de explotación de la demarcación (Tabla 1 y Figura 4), que han sido seleccionadas de entre la amplia relación de estaciones de control existente en la demarcación. Las variables incorporadas son la precipitación, la temperatura, la aportación y el nivel piezométrico, y los periodos que se representan incluyen no solo el año hidrológico 2022-2023, sino también la serie histórica, con el fin de poner en contexto el año objeto del informe.

Figura 4 Estaciones de control de la evolución de los recursos hídricos. Se indican las estaciones seleccionadas para representar la evolución de la situación.

Las estaciones seleccionadas para representar la evolución de la precipitación y la temperatura son Abusu y Berriatua en Bizkaia, y Altzola y Oiartzun en Gipuzkoa. En el caso de la aportación, se han seleccionado las estaciones de aforo situadas en la parte baja de las diferentes unidades hidrológicas por considerarse las más representativas. Finalmente, se han seleccionado 8 estaciones de control piezométrico para ilustrar la evolución del nivel.

Pág.4 Memoria

Tipo de medida	Sistema de explotación	Estación	Código	UTMX	UTMY	Cota
	Nervión-Ibaizabal	Abusu	C0B1	507010	4788081	23
Precipitación y	Artibai	Berriatua	C0BE	542501	4794747	25
temperatura	Deba	Altzola	C078	548867	4787631	17
temperatura	Oiartzun	Oiartzun	C0F4	590468	4795477	11
	Nervión-Ibaizabal	Balmaseda	C0C2	482208	4780281	178
	Nervion-ibaizabai	Abusu	C0B1	507010	4788081	23
	Butroe	Gatika	C005	507434	4802167	11
	Barbadun	Arenao	C0C5	488682	4791993	47
	Oka	Muxika	C063	525224	4792822	20
	Lea	Oleta	C0BA	539813	4798978	14
Aportación	Artibai	Berriatua	C0BE	542501	4794747	25
	Deba	Altzola	C078	548867	4787613	17
	Urola	Aizarnazabal	C0DD	561500	4789237	25
	Oria	Lasarte	C0EC	579430	4789116	17
	Urumea	Ereñozu	C0F0	586134	4788037	26
	Oiartzun	Oiartzun	C0F4	590468	4795477	11
	Bidasoa	Endarlaza	1106	603040	4794359	18
	Nervión-Ibaizabal	Mañaria-2	SP07	528283	4776347	180
	Nervion-ibaizabai	Gallandas-1	SP19	529104	4784384	276
	Oka	Tole	SP09	526522	4795636	6
Nivel	Oka	Olalde-B	SP06	528788	4799870	39
piezométrico	Deba	Kilimon-3	SP11	551294	4787670	59
	Oria	DTH-1	SP22	557255	4765342	441
	Ona	Elduaien-3	SP10	580925	4775980	288
	Bidasoa	Jaizkibel-5	SP24	594475	4802489	161

Tabla 1 Estaciones representativas de la evolución de los recursos hídricos.

La información expuesta en el presente epígrafe puede ampliarse en los siguientes enlaces:

Datos meteorológicos:

Euskalmet – Agencia Vasca de Meteorología http://www.euskalmet.euskadi.eus

AEMET – Agencia Estatal de Meteorología http://www.aemet.es

Datos hidrológicos:

https://www.uragentzia.euskadi.eus/datos-de-estaciones-de-

aforo/webura00-

Agencia Vasca del Agua contents/es/https://uragentzia.euskadi.eus/informacion/ubegi/we

bura00-01040102seguimiento/es/

Confederación Hidrográfica del https://www.chcantabr

Cantábrico info

https://www.chcantabrico.es/sai-sistema-automatico-de-

 $\underline{\text{informacion}}$

Diputación Foral de Gipuzkoa https://www.gipuzkoa.eus/es/web/obrahidraulikoak

<u>Precipitación</u>

La pluviometría tiene un rango amplio de variación espacial oscilando entre valores medios máximos de 2500 mm/año y medios mínimos de 750 mm/año, siendo la media de 1600 mm/año, según datos del Plan Hidrológico 2022-2027.

A continuación, se muestra la evolución de la precipitación en las estaciones de Abusu, Berriatua, Altzola y Oiartzun en el periodo 2000-2023 y en el año hidrológico 2022-2023.

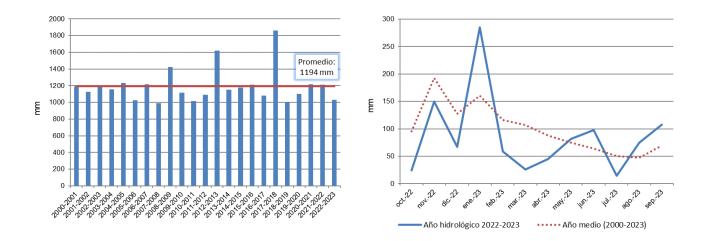


Figura 5 Evolución de la precipitación de la estación de Abusu (C0B1) (Fuente: Euskalmet).

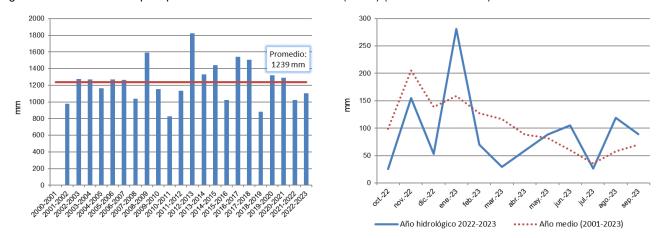


Figura 6 Evolución de la precipitación de la estación de Berriatua (C0BE) (Fuente: Euskalmet).

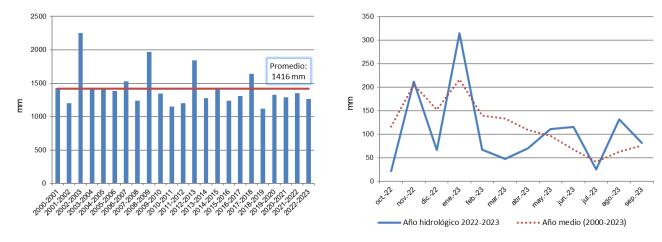


Figura 7 Evolución de la precipitación de la estación de Altzola (C078) (Fuente: Euskalmet).

Pág.6 Memoria

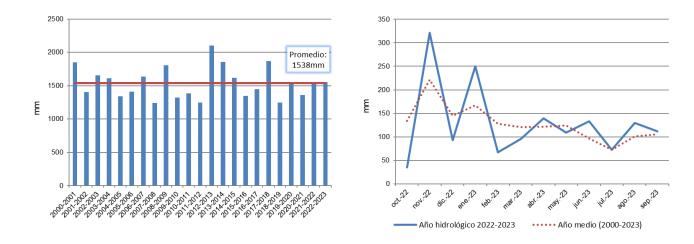


Figura 8 Evolución de la precipitación de la estación de Oiartzun (C0F4) (Fuente: Euskalmet).

Tal y como se observa en las gráficas anteriores, el año hidrológico 2022-2023 ha sido un año con una precipitación ligeramente inferior a la media. En cuanto a su distribución intraanual, destacan principalmente las bajas precipitaciones registradas en los meses de octubre y diciembre de 2022, febrero, marzo y abril de 2023. Por el contrario, en enero, junio y agosto de 2023 se han registrado precipitaciones abundantes, alcanzando valores por encima del promedio de los últimos años. Este hecho ha tenido incidencia en el grado de cumplimiento de los regímenes de caudales ecológicos durante los meses de estiaje, con una situación más favorable que en otros años.

Estación	Precipitación Media Año Hidrológico 2022-2023	Precipitación Media Periodo 2000-2023	P Año 2022-2023 / P Periodo 2000-2023
Abusu	1033	1194	0,87
Berriatua	1103	1239	0,89
Altzola	1264	1416	0,89
Oiartzun	1557	1538	1,01

Tabla 2 Relación entre la Precipitación media del año hidrológico 2022-2023 y del periodo 2000-2023.

<u>Temperatura</u>

La temperatura media anual, según datos del Plan Hidrológico 2022-2027, oscila entre los12 y 13 °C, con variaciones estacionales moderadas, que se expresan en la suavidad de los inviernos.

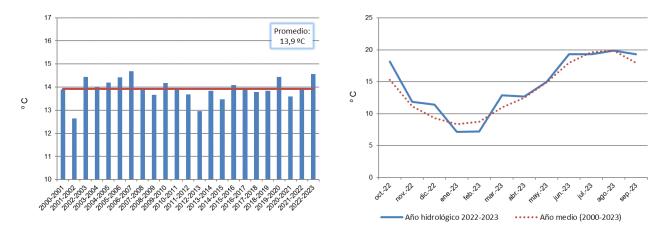


Figura 9 Evolución de la temperatura de la estación de Abusu (C0B1) (Fuente: Euskalmet).

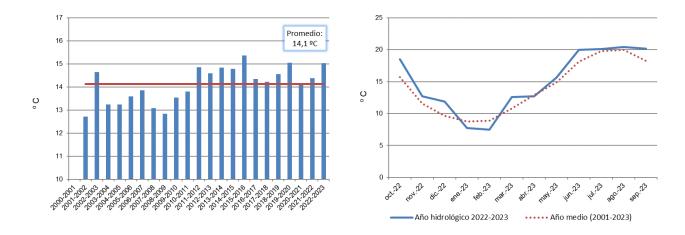


Figura 10 Evolución de la temperatura de la estación de Berriatua (C0BE) (Fuente: Euskalmet).

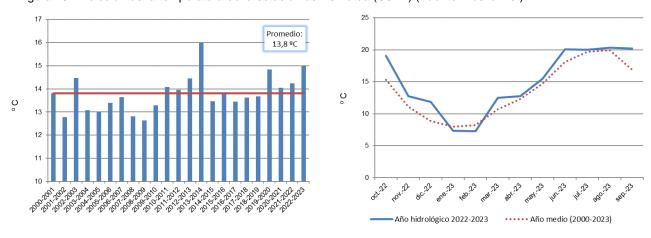


Figura 11 Evolución de la temperatura de la estación de Altzola (C078) (Fuente: Euskalmet).

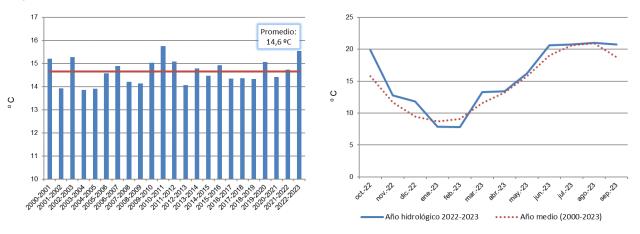


Figura 12 Evolución de la temperatura de la estación de Oiartzun (C0F4) (Fuente: Euskalmet).

En las gráficas anteriores se aprecia que el año hidrológico 2022-2023 ha sido un año con una temperatura notablemente superior a la media, siendo uno de los años más calurosos de la serie representada. En cuanto a la evolución intraanual de la temperatura, es preciso señalar que las temperaturas en octubre y diciembre de 2022 y marzo, junio y septiembre de 2023 han sido ligeramente superiores a las temperaturas medias correspondientes. En el resto de los meses no se aprecian variaciones significativas.

Pág.8 Memoria

Aportación

La aportación específica media estimada en el Plan Hidrológico de la Demarcación es de 800 mm anuales.

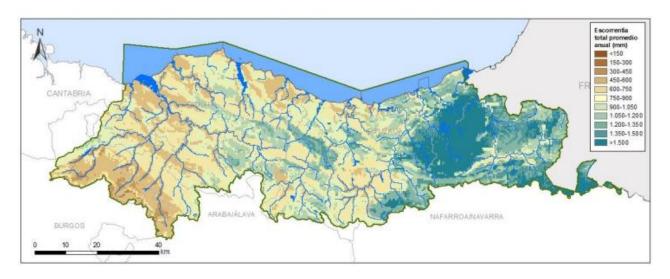


Figura 13 Aportación media en la demarcación.

A continuación, se muestra la evolución de la aportación de las estaciones de aforo más representativas de las diferentes unidades hidrológicas de la demarcación en el periodo 2000-2023 y en el año hidrológico 2022-2023.

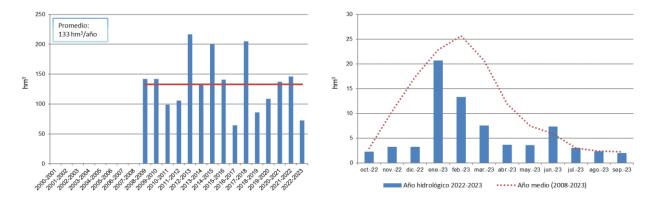


Figura 14 Evolución de la aportación en la estación Balmaseda (C0C2) (Fuente: Agencia Vasca del Agua-D.F. de Bizkaia).

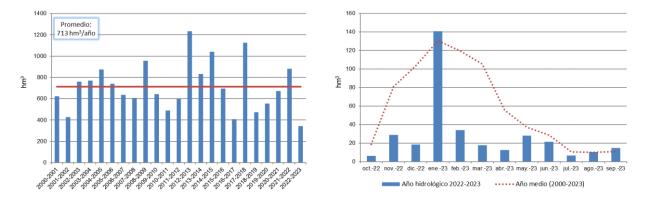


Figura 15 Evolución de la aportación en la estación Abusu (C0B1) (Fuente: Agencia Vasca del Agua- D. Foral de Bizkaia)

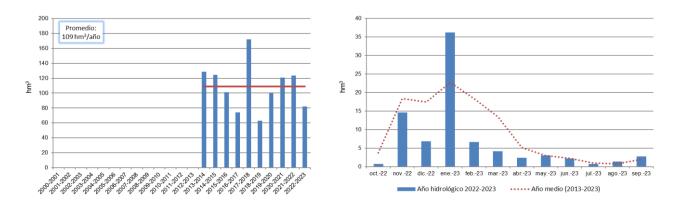


Figura 16 Evolución de la aportación en la estación Gatika (C005) (Fuente: Agencia Vasca del Agua).

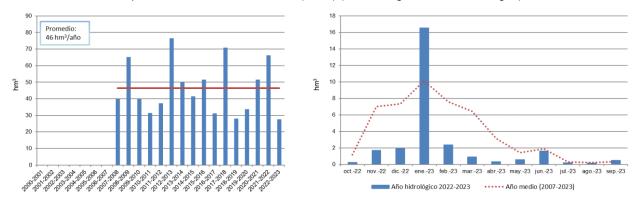


Figura 17 Evolución de la aportación en la estación Arenao (C0C5) (Fuente: Agencia Vasca del Agua- D. Foral de Bizkaia).

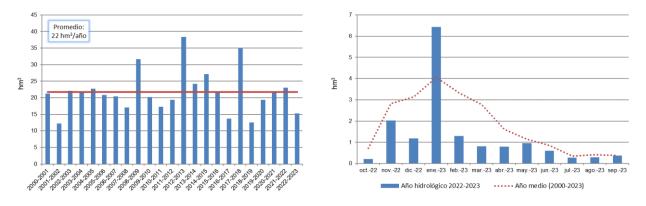


Figura 18 Evolución de la aportación en la estación Muxika (C063) (Fuente: Agencia Vasca del Agua- D. Foral de Bizkaia).

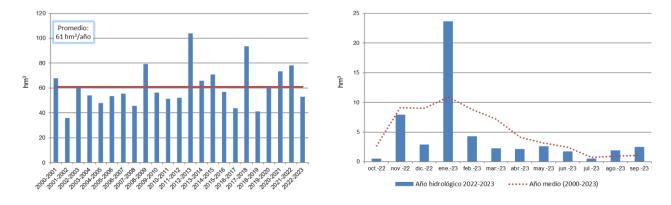
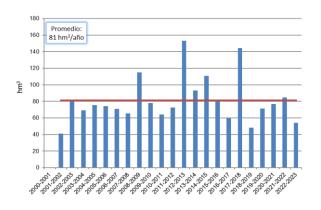



Figura 19 Evolución de la aportación en la estación Oleta (C0BA) (Fuente: Agencia Vasca del Agua- D. Foral de Bizkaia).

Pág.10 Memoria

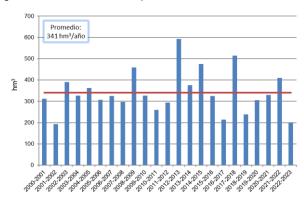



Figura 20 Evolución de la aportación en la estación Berriatua (C0BE) (Fuente: Agencia Vasca del Agua- D.F. de Bizkaia).

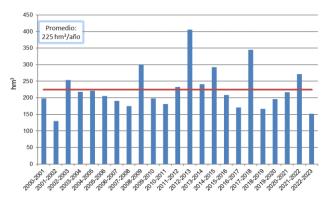



Figura 21 Evolución de la aportación en la estación Altzola (C078) (Fuente: Diputación Foral de Gipuzkoa).

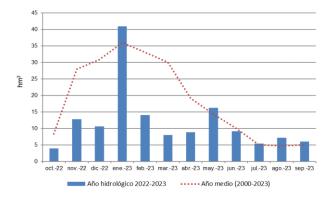
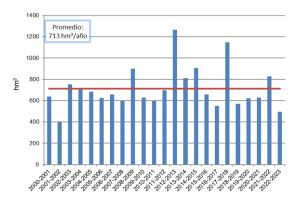



Figura 22 Evolución de la aportación en la estación Aizarnazabal (C0DD) (Fuente: Diputación Foral de Gipuzkoa).

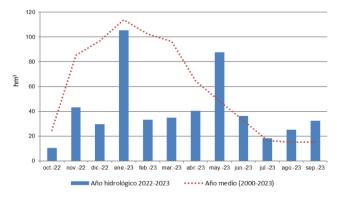


Figura 23 Evolución de la aportación en la estación Lasarte (C0EC) (Fuente: Diputación Foral de Gipuzkoa).

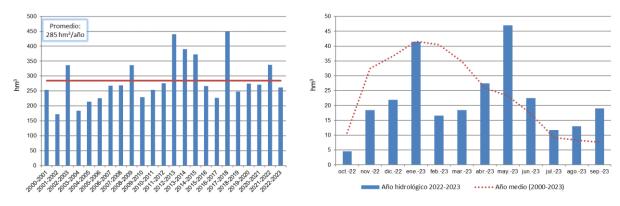


Figura 24 Evolución de la aportación en la estación Ereñozu (C0F0) (Fuente: Diputación Foral de Gipuzkoa).

Figura 25 Evolución de la aportación en la estación Oiartzun (C0F4) (Fuente: Diputación Foral de Gipuzkoa).

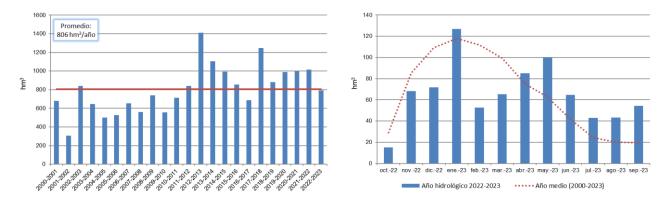


Figura 26 Evolución de la aportación en la estación Endarlaza (1106) (Fuente: Confederación Hidrográfica del Cantábrico).

Tal y como se observa en las gráficas anteriores, se puede concluir que el año hidrológico 2022-2023 ha sido más seco que la media de los últimos 23 años en toda la demarcación, en consonancia con los registros de precipitación.

El análisis de la evolución por meses indica diferencias notables respecto de las aportaciones medias mensuales de la serie 2000-2023: las aportaciones de enero y septiembre de 2023 han sido superiores a la media, en algunos casos, siendo el incremento del mes de enero considerable.

En octubre y diciembre de 2022 y en febrero, marzo y abril de 2023, por el contrario, las aportaciones registradas han estado, en general, muy por debajo de la media.

En el resto de los meses, las aportaciones no han variado de forma significativa respecto de los valores medios.

Pág.12 Memoria

Nivel piezométrico

El valor medio de la recarga total de agua subterránea (incluyendo infiltración de la precipitación, infiltración por otras escorrentías, relación con otras masas y retornos de riego) para la Demarcación Hidrográfica del Cantábrico Oriental está evaluado en 1781 hm³/año y el recurso disponible en 1508 hm³/año, según datos del Plan Hidrológico 2022-2027.

A continuación, se muestran las evoluciones del nivel piezométrico en distintas estaciones representativas: Mañaria-2, Gallandas-1, Tole, Olalde-B, Kilimon-3, DTH-1, Elduaien-3, y Jaizkibel-5 en el periodo 2000-2023 y en el año hidrológico 2022-2023.

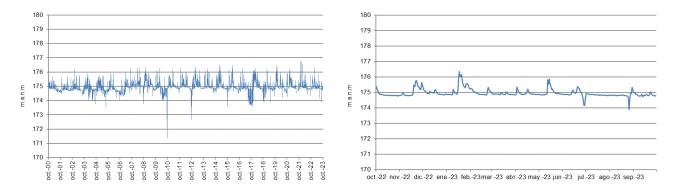


Figura 27 Evolución de niveles en la estación Mañaria-2 (SP07) (Fuente: Agencia Vasca del Agua).

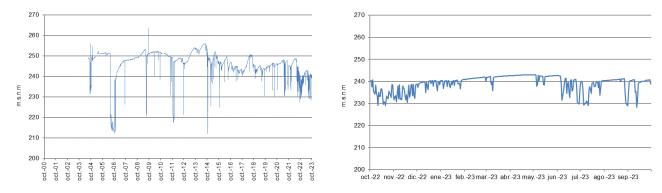


Figura 28 Evolución de niveles en la estación Gallandas-1 (SP19) (Fuente: Agencia Vasca del Agua).

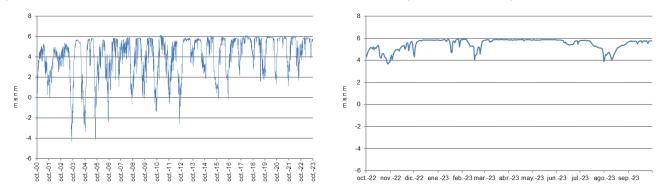


Figura 29 Evolución de niveles en la estación Tole (SP09) (Fuente: Agencia Vasca del Agua).

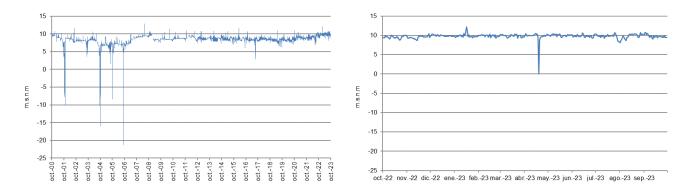


Figura 30 Evolución de niveles en la estación Olalde-B (SP06) (Fuente: Agencia Vasca del Agua).

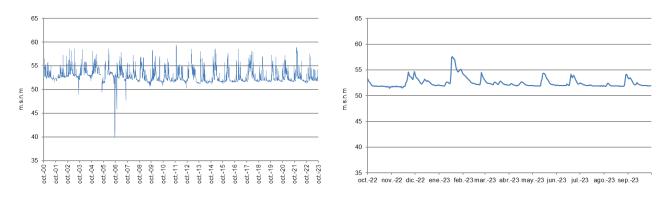


Figura 31 Evolución de niveles en la estación Kilimon-3 (SP11) (Fuente: Agencia Vasca del Agua-Diputación Foral de Gipuzkoa).

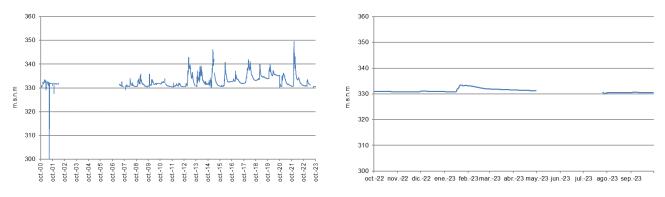


Figura 32 Evolución de niveles en la estación DTH-1 (SP22) (Fuente: Agencia Vasca del Agua-Diputación Foral de Gipuzkoa).

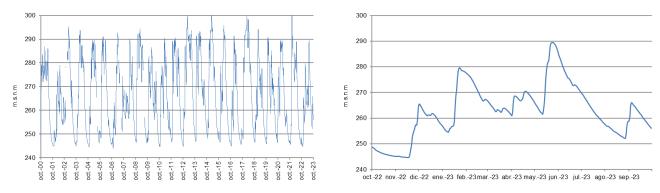
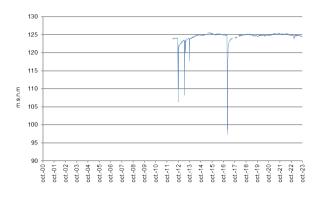



Figura 33 Evolución de niveles en la estación Elduaien-3 (SP10) (Fuente: Agencia Vasca del Agua-Diputación Foral de Gipuzkoa).

Pág.14 Memoria

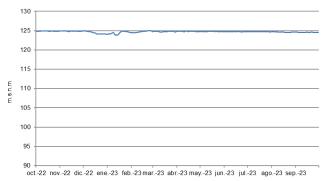


Figura 34 Evolución de niveles en la estación Jaizkibel-5 (SP24) (Fuente: Agencia Vasca del Agua-Diputación Foral de Gipuzkoa)

Las observaciones realizadas para las aguas superficiales en el apartado anterior son igualmente válidas para las aguas subterráneas, si bien en este caso se observan en las evoluciones los efectos de las extracciones en algunos de los ejemplos representados (Mañaria-2, Gallandas-1, Tole, Olalde-B).

Volúmenes de agua embalsados

A continuación, se muestran las variaciones de volumen de los embalses de la Demarcación Hidrográfica del Cantábrico Oriental en el periodo 2000-2023 y en el año hidrológico 2022-2023.

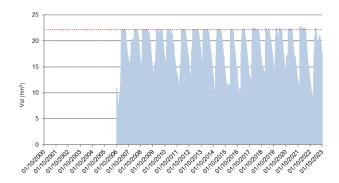


Figura 35 Evolución de volúmenes en el embalse de Ordunte (Fuente: Confederación Hidrográfica del Cantábrico-Agencia Vasca del Agua).

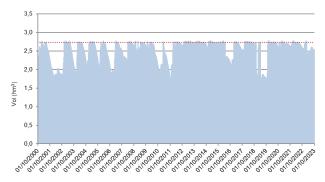
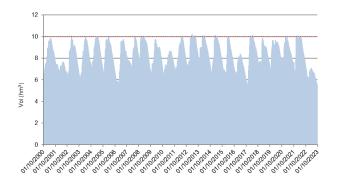



Figura 36 Evolución de volúmenes en el embalse de Aixola (Fuente: Consorcio de Aguas de Gipuzkoa).

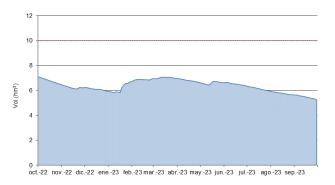
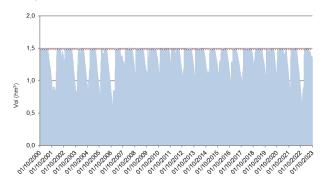



Figura 37 Evolución de volúmenes en el embalse de Urkulu (Fuente: Consorcio de Aguas de Gipuzkoa).

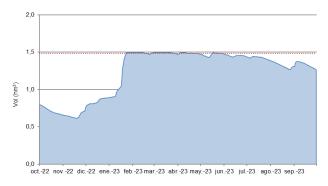
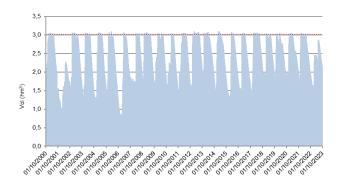



Figura 38 Evolución de volúmenes en el embalse de Barrendiola (Fuente: Consorcio de Aguas de Gipuzkoa).

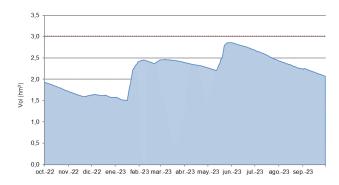


Figura 39 Evolución de volúmenes en el embalse de Arriaran (Fuente: Consorcio de Aguas de Gipuzkoa).

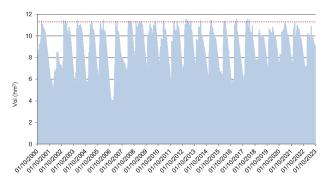


Figura 40 Evolución de volúmenes en el embalse de Ibaieder (Fuente: Consorcio de Aguas de Gipuzkoa).

Pág.16 Memoria

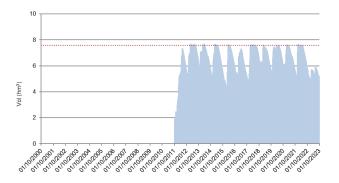


Figura 41 Evolución de volúmenes en el embalse de Ibiur (Fuente: Consorcio de Aguas de Gipuzkoa).

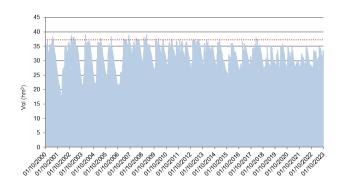
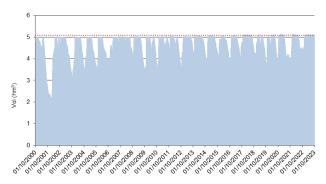



Figura 42 Evolución de volúmenes en el embalse de Añarbe (Fuente: Confederación Hidrográfica del Cantábrico – Agencia Vasca del Agua).

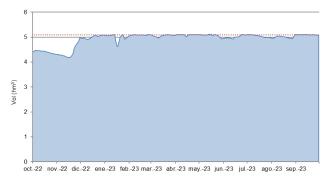


Figura 43 Evolución de volúmenes en el embalse de San Antón (Fuente: Servicios de Txingudi, S.A.).

Durante este último año hidrológico, la variación en los volúmenes de embalses ha seguido la tónica de la media de los últimos años, salvo en el caso de los embalses de Urkulu e Ibiur cuyo volumen ha estado por debajo de la media.

La diferencia del volumen conjunto embalsado entre el principio y el final del año hidrológico en la Demarcación Hidrográfica del Cantábrico Oriental ha sido de 8,29 hm³ (70,50 frente a 78,79 hm³).

3.2 RECURSOS HÍDRICOS NO CONVENCIONALES

En relación con los recursos hídricos no convencionales, en esta demarcación existen recursos procedentes de la reutilización, no así de la desalinización. En relación con los primeros, existen 2 aprovechamientos directos de efluentes depurados:

- El Consorcio de Aguas Bilbao Bizkaia reutiliza parte del vertido de la depuradora de Galindo (Sestao) en los procesos de refrigeración de la instalación de valoración energética de lodos de depuración.
- En su planta de Muskiz Petronor reutiliza e incorpora posteriormente al proceso agua procedente de la planta de tratamiento de aguas residuales industriales de baja salinidad.

Figura 44 Reutilización de agua.

De acuerdo con el Plan Hidrológico vigente, el volumen total reutilizado en el ámbito de la demarcación es de 3,2 hm³/año. En el año 2023, el volumen reutilizado ha sido de 3,14 hm³, siendo ligeramente inferior al de los últimos 5 años.

Respecto al volumen de agua reutilizada en 2023, en la EDAR de Galindo se reutilizaron 1,13 hm³ representando el 88,1% del total de agua que utiliza la planta.

En Petronor el volumen reutilizado en 2023 ha sido de 10,0 hm³. El porcentaje que representa el agua regenerada en esta planta ha descendido ligeramente respecto a años anteriores (20,1% en la actualidad).

Aprovechamiento	UTMX	UTMY	Volumen 2015 (hm³/año)	Volumen 2016 (hm³/año)	Volumen 2017 (hm³/año)	Volumen 2018 (hm³/año)	Volumen 2019 (hm³/año)	Volumen 2020 (hm³/año)	Volumen 2021 (hm³/año)	Volumen 2022 (hm³/año)	Volumen 2023 (hm³/año)
EDAR Galindo (Consorcio de Aguas Bilbao Bizkaia)	500186	4794548	0,92	0,9	0,9	0,9	1,00	0,86	1,09	1,22	1,13
Petronor (Muskiz)	491107	4801010	1,3	1,7	2,1	2,2	2,5	2,3	2,3	2,5	2,01
TOTA	L		2,22	3,1	3,0	3,1	3,5	3,2	3,4	3,72	3,14

Tabla 3 Evolución de los volúmenes reutilizados

Pág.18 Memoria



Figura 45 Evolución de la reutilización de agua en la EDAR de Galindo (Fuente: Consorcio de Aguas Bilbao Bizkaia).

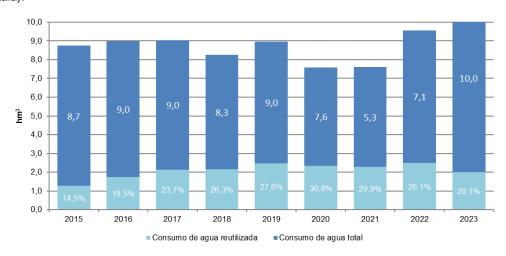


Figura 46 Evolución de la reutilización de agua en Petronor (Muskiz) (Fuente: Petronor).

3.3 RECURSOS HÍDRICOS EXTERNOS

De acuerdo con la información del Plan Hidrológico 2022-2027, en el ámbito de la Demarcación Hidrográfica del Cantábrico Oriental, 180 hm³/año corresponden a la media de recursos procedentes de trasferencias principalmente de la DH del Ebro. El trasvase más importante es el Zadorra-Arratia que se usa para abastecimiento y generación de energía. De éste, aproximadamente 80 hm³/año son para suministro al Gran Bilbao y otras comarcas de Bizkaia. La evolución de los volúmenes de este trasvase es la siguiente:

Trasvase	Volumen 2015- 2016 (hm³/año)	Volumen 2016- 2017 (hm³/año)	Volumen 2017- 2018 (hm³/año)	Volumen 2018- 2019 hm³/año)	Volumen 2019- 2020 (hm³/año)	Volumen 2020- 2021 (hm³/año)	Volumen 2021- 2022 (hm³/año)	Volumen 2022- 2023 (hm³/año)
Zadorra-Arratia	160,21	117,82	247,16	137,70	162,39	172,89	201,17	81,32

Tabla 4 Evolución de los volúmenes del trasvase Zadorra-Arratia.

Otros trasvases de menor entidad son el Cerneja-Ordunte, destinado al abastecimiento de Bilbao y parte de las Encartaciones, y el Altzania-Oria, utilizado para la producción de energía.

La siguiente tabla muestra la evolución de los volúmenes trasvasados a nivel de demarcación.

Trasva	Volumen medio recogido en el PH (hm³/año)	Volumen 2015- 2016 (hm³/año)	Volumen 2016- 2017 (hm³/año)	Volumen 2017- 2018 (hm³/año)	Volumen 2018- 2019 hm³/año)	Volumen 2019- 2020 (hm³/año)	Volumen 2020- 2021 (hm³/año)	Volumen 2021- 2022 (hm³/año)	Volumen 2022- 2023 (hm³/año)
Tota	179,73	173,71	131,32	263,25	152,31	178,04	186,59	213,42	95,54

Tabla 5 Evolución de los volúmenes trasvasados totales.

Figura 47 Principales trasvases.

- Las precipitaciones y las aportaciones registradas durante el año hidrológico 2022-2023 con carácter general, han sido inferiores a la media de la serie analizada. Lo mismo puede decirse de los niveles piezométricos, si bien en sondeos como Mañaria-2, Gallandas-1, Tole y Olalde-B se hacen patentes los efectos de las extracciones.
- El análisis de la evolución por meses indica un reparto desigual a lo largo del año, con meses como enero, junio y agosto en los cuales las precipitaciones han sido superiores a la media, mientras que en otros (octubre y diciembre 2022, y febrero, marzo y abril 2023) los valores registrados han sido inferiores a los valores medios.
- Esta situación ha tenido incidencia en el grado de cumplimiento de los regímenes de caudales ecológicos durante los meses de estiaje, con una situación menos desfavorable que en años previos.
- Los volúmenes de agua embalsada no han registrado grandes variaciones, siguiendo la tónica de la media de los últimos años, salvo en Urkulu e Ibiur donde los niveles han estado por debajo de la media (la diferencia del volumen conjunto embalsado entre el principio y el final del año hidrológico en la Demarcación Hidrográfica del Cantábrico Oriental ha sido de 8,29 hm³).
- El volumen de suministro de aguas regeneradas es similar al de años anteriores, cercano a 3 hm³/año.

Pág.20 Memoria

4. EVOLUCIÓN DE LOS USOS Y DEMANDAS DE AGUA

Según datos del Plan Hidrológico 2022-2027, la demanda de agua correspondiente a usos

consuntivos en la demarcación es de 232,46 hm³ anuales, de los que 196,4 hm³ (84,5%) se suministran a través de redes de abastecimiento urbanas, lo que incluye las demandas domésticas, institucionalmunicipal, y usos de otro tipo conectados a la red (industrial, riego, ganadería, etc.). El resto de la demanda corresponde a tomas propias, destacando las industriales con unos 31,7 hm³ anuales (13,6%). El 2% restante incluye demandas para riego, ganadería y golf fundamentalmente, con toma propia.

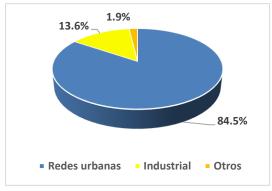


Figura 48 Demandas de agua según procedencia de redes urbanas y tomas propias

Sistemas abastecimiento urbano	Industria toma propia	Riego toma propia	Ganadería toma propia	Golf toma propia	
196,36	31,69	2,71	1,13	0,57	

Tabla 6 Demanda consuntiva actual por usos y origen.

4.1 USO URBANO

En la Figura 49 se muestra la evolución de los consumos de agua en alta para abastecimiento urbano en la Demarcación desde 2009 hasta la actualidad. En ella se aprecia una reducción del 16% en este periodo.

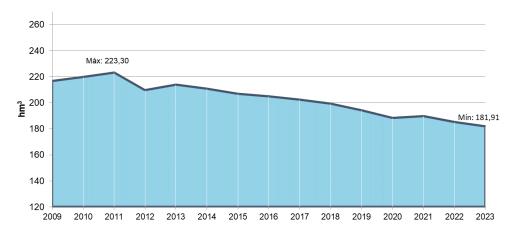


Figura 49 Consumos de agua en alta para abastecimiento urbano en la Demarcación.

Esta reducción, en gran medida viene provocada por la reducción de consumos incontrolados, aunque también han podido tener influencia factores como el aumento de precios del agua y la concienciación ciudadana, entre otros. Todo ello en un periodo de tiempo (2009-2023) en el que la población abastecida se ha incrementado ligeramente (Figura 50).

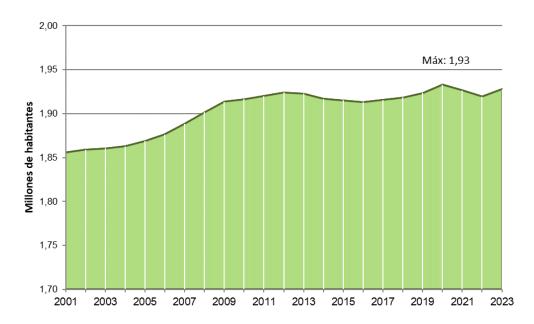


Figura 50 Evolución de la población en la demarcación (Fuentes: Eustat, Nastat, Centro de datos estadísticos de Castillo y León).

En la Figura 51 y siguientes se puede encontrar la evolución de los consumos de agua para los principales entes gestores de la demarcación, según los datos disponibles en los últimos años. En todos los casos este periodo amplio muestra una clara tendencia de **reducción del consumo**.

Esta evolución es especialmente positiva en los sistemas de abastecimiento gestionados por Aguas de Añarbe, Servicios de Txingudi, Gipuzkoako Urak y Consorcio de Aguas Bilbao Bizkaia (Venta Alta).

Por último, desde 2022 se ha producido un cambio relevante en la comarca de Busturialdea, que ha pasado a ser gestionada por el Consorcio de Aguas de Bilbao Bizkaia. Gracias a la mayor capacidad de gestión del Consorcio se ha conseguido reducir el consumo de agua de forma considerable en los principales núcleos urbanos de la comarca, Gernika y Bermeo, donde se han efectuado diversas reparaciones, renovaciones y mejoras en la gestión de las redes de distribución.

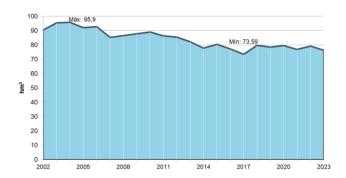


Figura 51 Volumen suministrado desde la ETAP de Venta Alta (Fuente: Consorcio de Aguas Bilbao Bizkaia).

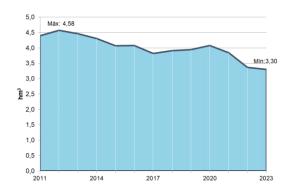


Figura 52 Volumen servido por Kantauriko Urkidetza (Fuente: Kantauriko Urkidetza).

Pág.22 Memoria

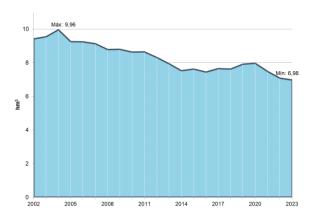


Figura 53 Volumen de entrada a la ETAP de Elordi (Fuente: Servicios de Txingudi).

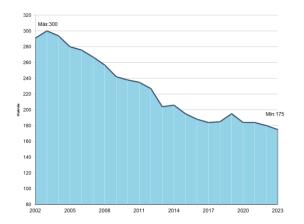


Figura 55 Consumo en alta (I/hab/día) en los municipios del Consorcio de Aguas de Gipuzkoa (Fuente: Consorcio de Aguas de Gipuzkoa).

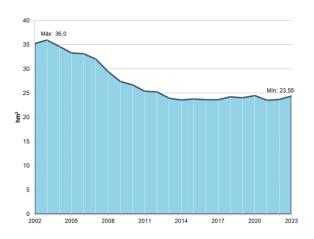


Figura 54 Volumen suministrado por Aguas del Añarbe (Fuente: Aguas del Añarbe).

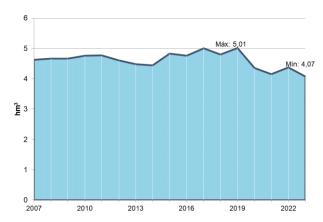


Figura 56 Volumen de entrada a las ETAPs de Busturialdea (Fuente: Consorcio de Aguas de Busturialdea y Consorcio Aguas Bilbao Bizkaia).

4.2 USO INDUSTRIAL

Tal y como ocurre con el uso urbano, las industrias con tomas propias muestran una **tendencia descendente en el consumo de agua**. En este caso, el factor principal es la mejora continua de los procesos industriales que deriva en un uso más eficiente de los recursos. Además, el cierre de algunas empresas grandes consumidoras de agua, especialmente en el sector papelero y metalúrgico, también ha incidido en este descenso. En el año 2020, la situación de crisis sanitaria generada por el COVID-19 tuvo un efecto notable en el descenso de estos consumos, recuperándose con posterioridad parcialmente. En el año 2023 se ha alcanzado el valor mínimo de la serie considerada.

A continuación, se muestra la evolución del consumo industrial de tomas propias en el ámbito de la demarcación correspondiente al País Vasco. La reducción para el periodo 2009-2023 es aproximadamente del 35,8%.

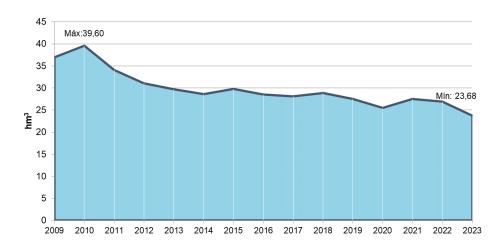


Figura 57 Volumen consumido para uso industrial procedente de tomas propias (Fuente: Canon del agua de la CAPV)¹.

4.3 USO AGRARIO

El uso agrario en la demarcación es muy poco relevante. Se estima en 3,85 hm³ anuales.

4.4 USOS CONSUNTIVOS GLOBALES

En la gráfica siguiente se muestra la evolución temporal de los usos consuntivos en la demarcación. Puesto que el uso urbano, y en menor medida el industrial, son los que más peso tienen en el total, la tendencia decreciente es similar. En el año 2023 se ha alcanzado el mínimo de la serie, con descensos importantes en el consumo de agua en los sistemas de abastecimiento urbanos y en los usos industriales de toma propia.

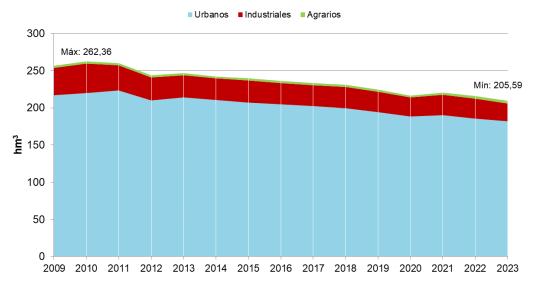


Figura 58 Evolución de usos consuntivos en la demarcación, por tipo de uso.

Pág.24 Memoria

¹ En la gráfica del uso industrial se ha ajustado el dato de 2022, que en el informe anterior era provisional. El dato correspondiente a 2023 es provisional y será ajustado en el próximo informe de seguimiento.

4.5 USO HIDROELÉCTRICO

La evolución del uso hidroeléctrico no guarda relación con la registrada para los usos urbano e industrial, y no se aprecia un patrón claramente definido en la evolución.

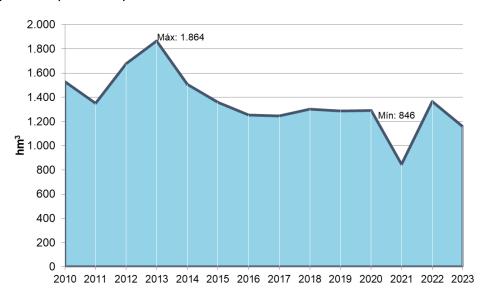


Figura 59 Volumen turbinado (Fuente: Canon del agua de la CAPV)2.

- En general, en los usos urbanos se ha producido un descenso en los consumos de agua como consecuencia de la mejora de la gestión y renovación de redes de distribución, así como de la mejora de la eficiencia en el uso por parte de los usuarios finales. Un cambio muy relevante se ha producido en la comarca de Busturialdea, que ha pasado a ser gestionada por el Consorcio de Aguas de Bilbao Bizkaia y donde gracias a la mayor capacidad de gestión del Consorcio se ha conseguido reducir el consumo de agua de forma considerable en los principales núcleos urbanos de la comarca, Gernika y Bermeo, donde se han efectuado diversas reparaciones, renovaciones y mejoras en la gestión de las redes de distribución. Se consolida, por tanto, la evolución decreciente del consumo registrada en los años precedentes.
- En los usos industriales también se ha producido un descenso del consumo en el año 2022-2023 respecto de años previos, aunque el descenso más acusado se habría producido en años previos a 2010, como consecuencia del cierre de empresas producido por la crisis económica de 2007 y por la mejora de la eficiencia en el uso del agua en los grandes consumidores.
- En relación con el uso hidroeléctrico, al ser la mayoría de las centrales de tipo fluyente y carecer de regulación interanual, el volumen turbinado depende de las mayores o menores aportaciones disponibles.

Memoria Pág.25

-

² En la gráfica de uso hidroeléctrico se ha ajustado el dato de 2022, que en el informe anterior era provisional. El dato correspondiente a 2023 es provisional y será ajustado en el próximo informe de seguimiento.

5. GRADO DE CUMPLIMIENTO DE LOS REGÍMENES DE CAUDALES ECOLÓGICOS

El Plan Hidrológico incorpora en el Capítulo 3 de su Normativa la determinación del régimen de caudales ecológicos.

El Programa de Medidas del Plan Hidrológico determina, a su vez, que el seguimiento del cumplimiento de los regímenes de caudales ecológicos se realizará a través de la red de estaciones de aforo y del control específico de las condiciones de los aprovechamientos existentes.

De acuerdo con lo anterior, las Administraciones Hidráulicas han realizado el seguimiento del grado de cumplimiento de los regímenes de caudales ecológicos definidos por el Plan Hidrológico de la Demarcación Hidrográfica del Cantábrico Oriental durante el año hidrológico 2022-2023. A continuación, se muestra un resumen de los análisis realizados en este ámbito por la Agencia Vasca del Agua y la Confederación Hidrográfica del Cantábrico. Puede obtenerse información más detallada al respecto en el siguiente enlace:

Agencia Vasca del Agua:
 https://www.uragentzia.euskadi.eus/transparencia/gestion-de-los-recursos-y-usos-del-agua/webura00-contents/es/

5.1 METODOLOGÍA

El análisis de cumplimiento del régimen de caudales ecológicos se ha realizado para los caudales mínimos ecológicos. Para el ámbito de las Cuencas Internas del País Vasco, es preciso recordar que el Plan consideró que, debido a sus características, el resto de elementos definidos por la Instrucción de Planificación Hidrológica no son significativos (caudales máximos, caudales de crecida, tasas de cambio).

En la DH del Cantábrico Oriental, los caudales mínimos ecológicos han sido contrastados con los registros de distintas estaciones de aforo para el año hidrológico 2022-2023 y, de forma puntual, con aforos directos realizados en estiaje de 2023 en los aprovechamientos más significativos.

En el análisis realizado se ha tenido en cuenta la información aportada por el seguimiento de los Planes Especiales de Actuación ante Situaciones de Alerta y Eventual Sequía (PES), donde se informa sobre cuándo se ha producido un diagnóstico de sequía prolongada y por tanto se permite la aplicación de un régimen de caudales ecológicos menos exigente en las masas de agua que no pertenecen a la RN2000, atendiendo a lo establecido en el artículo 18.4 del Reglamento de Planificación Hidrológica. Del mismo modo se tienen en cuenta las excepciones dispuestas en el Capítulo III de la Normativa del Plan Hidrológico vigente.

En concreto, este seguimiento se ha realizado en 27 estaciones de aforo y, además, mediante aforos directos se ha controlado el grado de cumplimiento de caudales ecológicos en 93 captaciones significativas.

Pág.26 Memoria

Figura 60 Estaciones de aforo y aprovechamientos analizados para la evaluación del grado de cumplimiento de los caudales ecológicos en el año hidrológico 2022-2023.

5.2 RESULTADOS OBTENIDOS

Las conclusiones del análisis indican que, en general, el grado de cumplimiento del régimen de caudales ecológicos en estaciones de aforo ha sido superior al del año anterior. Esto se debe en gran parte, a que dicho año anterior fue un año de marcado carácter seco, sobre todo en el estiaje. En el caso de las captaciones aforadas, la evolución del grado de cumplimiento sigue siendo positiva, alcanzando un valor ligeramente superior al del año anterior.

Tal y como se ha reflejado en el apartado relativo a la evolución de los recursos hídricos, en los meses de junio y agosto de 2023 la precipitación ha sido superior a la media de los últimos 23 años, lo que ha conllevado que en 2023 el grado de cumplimiento del régimen de caudales ecológicos haya sido superior al de otros años.

Por el contrario, en octubre y diciembre de 2022, y en febrero, marzo y abril de 2023, se han registrado escasas precipitaciones, alcanzando valores por debajo del promedio de los últimos años.

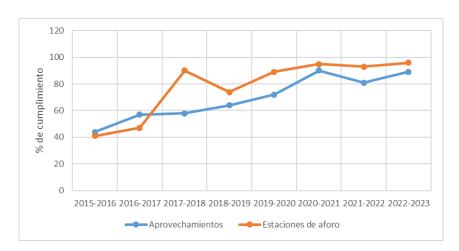


Figura 61 Evolución del porcentaje de cumplimiento del régimen de caudales ecológicos en estaciones de aforo y en aprovechamiento concretos.

La siguiente figura muestra la distribución del grado de cumplimiento por unidad hidrológica, calculado como el porcentaje de estaciones o captaciones que cumplen con respecto al total de estaciones o captaciones consideradas en cada unidad hidrológica. Cabe indicar que, en relación

con los aprovechamientos, se han considerado los incumplimientos de caudales ecológicos dispuestos en el Plan Hidrológico vigente. En aprovechamientos con diferentes trámites de modificación de características esenciales en curso, los aforos han sido contrastados, además, con los caudales establecidos en sus títulos concesionales.

Figura 62 Grado de cumplimiento de los regímenes de caudales ecológicos en las estaciones de aforo y aprovechamientos analizados, año hidrológico 2022-2023.

En el año hidrológico 2022-2023, el grado de cumplimiento de los caudales ecológicos en las estaciones de aforo ha sido satisfactorio, dándose únicamente una situación de incumplimiento en la estación de aforo de Arenao (unidad hidrológica Barbadun). En el caso de dicha estación de aforo, es preciso indicar que recientemente se ha modificado la curva de gastos de la estación, constatándose que los caudales circulantes reales son más bajos. Por ello, en el cuarto ciclo de planificación se procederá a revisar los caudales ecológicos para ajustarlos a la realidad hidrológica de esta cuenca.

Finalmente, en cuanto a los aprovechamientos, se han identificado incumplimientos puntuales, en las unidades hidrológicas Deba y Urola, debidos al uso hidroeléctrico, y en las unidades hidrológicas Oiartzun y Urumea, debidos a tomas industriales.

- El grado de cumplimiento de los regímenes de caudales ecológicos ha registrado un ligero ascenso respecto al año anterior, en gran medida debido al marcado carácter seco del año hidrológico anterior.
- En el caso de las estaciones de aforo, el porcentaje de cumplimiento del régimen de caudales ecológicos ha sido del 96% en el año 2022/23 y del 93% en el año hidrológico 2021/22.
- En el caso de los aforos puntuales en aprovechamientos significativos, el porcentaje de cumplimiento del régimen de caudales ecológicos ha sido del 89% en el año 2022/23 y del 81% en el año 2021/22.
- Los programas de seguimiento han indicado incumplimientos puntuales en determinados aprovechamientos, fundamentalmente hidroeléctricos, en las unidades hidrológicas Deba y Urola e industriales en la unidad hidrológica Ibaizabal.

Pág.28 Memoria

6. ESTADO DE LAS MASAS DE AGUA SUPERFICIAL Y SUBTERRÁNEA

La valoración del estado de las masas de agua y su seguimiento representa un elemento central de la planificación hidrológica, puesto que determina la necesidad de evaluar, implantar o corregir medidas que den lugar a la consecución de los objetivos medioambientales que se plantee la propia planificación.

El estado de las masas de agua superficial queda determinado por el peor valor de su estado o potencial ecológico y de su estado químico; mientras que el estado de las masas de agua subterránea queda determinado por el peor valor de su estado cuantitativo y de su estado químico.

En este apartado se incluye, de forma resumida, la información de la evaluación del estado de las masas en el año 2023, y se compara con la evaluación realizada en el Plan Hidrológico a partir de los resultados del quinquenio 2015-2019, que se considera como situación de referencia del tercer ciclo de planificación. También se muestra la evolución del estado de las masas de agua en el último quinquenio (2019-2023).

6.1 PROGRAMAS DE SEGUIMIENTO

En la demarcación se dispone de programas de seguimiento que han dado lugar a series de controles biológico y químico de aguas superficiales y subterráneas de más de veinticinco años, teniendo en cuenta la mayoría de los elementos de calidad exigidos. Estos programas de seguimiento se conciben con un carácter flexible, es decir, periódicamente se adaptan a los niveles de presiones existentes, al estado de las masas de agua y a la disponibilidad presupuestaria existente, tratando de optimizar los esfuerzos de control. La información está disponible fundamentalmente en los siguientes enlaces:

- Agencia Vasca del Agua: https://www.uragentzia.euskadi.eus/informacion/ultimos-informes/webura00-01040102seguimiento/es/ https://uragentzia.euskadi.eus/informacion/ubegi/webura00-01040102seguimiento/es/
- Confederación Hidrográfica del Cantábrico: https://www.chcantabrico.es/gestion-cuencas/estado-calidad-aguas

Los actuales programas de control de las masas de agua (Figura 63 y Figura 64) y de las zonas protegidas (Figura 65) proporcionan unos altos niveles de precisión y fiabilidad puesto que se plantea que todas las masas de agua dispongan de al menos una estación de control representativa, y que en determinados casos se dé el complemento con el seguimiento de presiones significativas, de situaciones de referencia o para mejora de conocimiento en masas grandes, heterogéneas o con una problemática desconocida.

Por otro lado, se da un cumplimiento holgado de las periodicidades mínimas para los controles (Anexo V DMA) lo que implica que con carácter general a lo largo del ciclo de vigencia del Plan Hidrológico se dé un seguimiento sistemático todos los años.

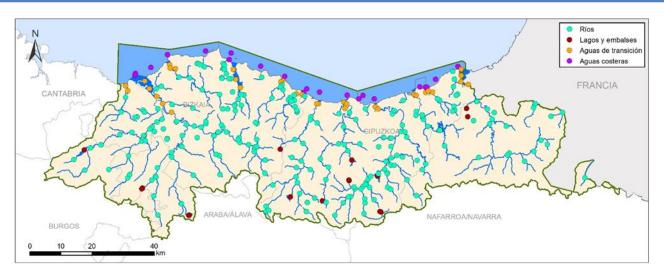


Figura 63 Red de seguimiento del estado de las masas de agua superficial.

Figura 64 Red de seguimiento del estado de las masas de agua subterránea.

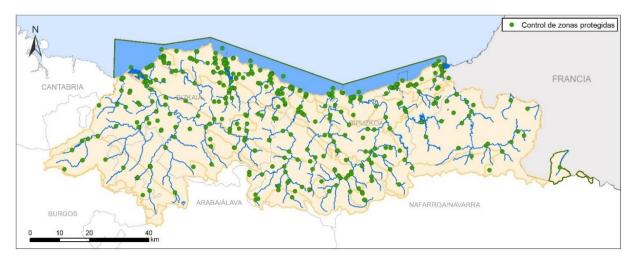


Figura 65 Red de seguimiento de las zonas protegidas.

Pág.30 Memoria

6.2 MASAS DE AGUA SUPERFICIAL

Estado ecológico

A continuación, se muestra la evaluación de estado estado/potencial ecológico (en adelante, estado ecológico) de las masas de agua superficial de la demarcación tanto para la situación de referencia del tercer ciclo de planificación (diagnóstico realizado en el Plan Hidrológico 2022-2027 en base a la información del periodo 2015-2019) como para el año 2023.

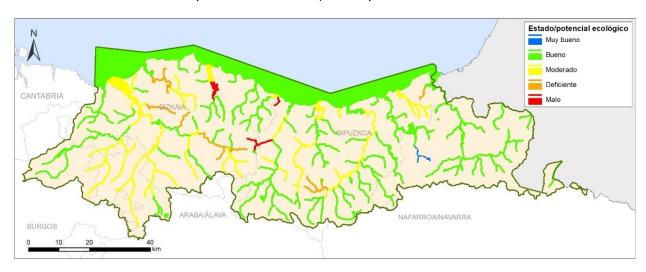


Figura 66 Estado ecológico de las masas de agua superficial. Situación de referencia 3er ciclo de planificación.

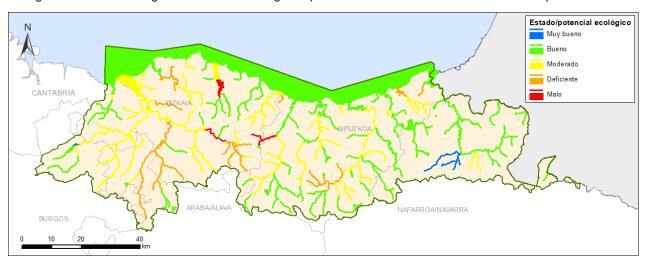


Figura 67 Estado ecológico de las masas de agua superficial. Año 2023.

Los sistemas de evaluación de estado ecológico aplicados para el escenario de referencia del primer y segundo ciclo de planificación se han ido reconsiderado ante los continuos avances técnicos y el mejor conocimiento científico.

Sobre la base de la normativa de aplicación, a día de hoy se dispone de sistemas de evaluación actualizados, descritos en el Anejo VIII de la Memoria del Proyecto de revisión 2022-2027 del Plan Hidrológico. Esta actualización se fundamenta en los siguientes elementos:

 Decisión (UE) 2024/721 de la Comisión de 27 de febrero de 2024 por la que se fijan, de conformidad con la Directiva 2000/60/CE del Parlamento Europeo y del Consejo, los valores de las clasificaciones de los sistemas de control de los Estados miembros a raíz del ejercicio de intercalibración, y por la que se deroga la Decisión (UE) 2018/229.

- Instrucción de 14 de Octubre de 2020 del Secretario de Estado de Medio Ambiente (SEMA) por la que se establecen los Requisitos Mínimos para la Evaluación del Estado de las Masas de Agua en el tercer ciclo de la Planificación Hidrológica y la aplicación de la última guía metodológica para la evaluación del estado de las masas de agua superficiales y subterráneas³.
- Diversas actualizaciones de los protocolos de muestreo, análisis y evaluación publicados por la Agencia Vasca del Agua⁴ y la sistematización en la evaluación del componente hidromorfológico de las masas de agua superficiales.

Además, en 2023 el sistema de evaluación de los indicadores fisicoquímicos de masas de agua de la categoría ríos ha sido modificado hacia un mayor nivel de exigencia. La metodología planteada establece que el buen estado en un punto de control se da cuando los valores promedios de los indicadores implicados superan el umbral bueno/moderado en los tres periodos de régimen estacional de caudal (aguas altas, aguas medias y aguas bajas⁵). Este método se ha aplicado al periodo 2019-2023.

En su conjunto, la revisión de los sistemas de evaluación de cada elemento de calidad, unido a la aplicación del principio de 'uno fuera todos fuera', da lugar a unos requerimientos para el cumplimiento de objetivos de calidad que, en conjunto, son más exigentes que los de periodos previos.

En la Figura 68 y Figura 69 se plasma la evaluación resultante de aplicar un mismo sistema de evaluación a los resultados de las anualidades del periodo 2019-2023, generando así una serie homogénea.



Figura 68 Evolución del estado ecológico de las masas de agua superficial⁶.

ł

³ Guía para la evaluación del estado de las aguas superficiales y subterráneas (2021) MITERD https://www.miteco.gob.es/es/agua/temas/estado-y-calidad-de-las-aguas/guia-para-evaluacion-del-estado-aguas-superficiales-y-subterraneas tcm30-514230.pdf

⁴https://www.uragentzia.euskadi.eus/informacion/protocolos-de-muestreo-de-laboratorio-y-de-calculo-de-indices-y-metricas-para-el-seguimiento-del-estado-de-las-masas-de-agua-superficial-de-la-capv/webura00-01040102seguimiento/es/

⁵ Aguas altas: enero, febrero, marzo y abril; aguas medias: mayo, junio, noviembre y diciembre; aguas bajas: julio, agosto, septiembre y octubre.

⁶ REF3erciclo: Escenario de referencia del tercer ciclo de planificación.

Con carácter general se puede considerar que la situación del estado ecológico del conjunto de masas de agua superficial es relativamente estable en el periodo 2019-2023 (Figura 68). En el caso de las masas de agua de transición, embalses y lagos la situación ha mejorado respecto a la situación de referencia del tercer ciclo.

En el caso de los ríos, el número de masas de agua que alcanza el buen estado/potencial ecológico en el periodo 2019-2023 es ligeramente inferior al del escenario de referencia del tercer ciclo. Esto no es debido a un empeoramiento del estado/potencial ecológico de los ríos, sino a que, como se ha explicado anteriormente, el sistema de evaluación de los indicadores fisicoquímicos que se ha utilizado para el periodo 2019-2023 es más exigente que el aplicado al escenario de referencia del tercer ciclo. Además, es preciso señalar que varias masas de agua de la categoría río se encuentran en una situación inestable, en el límite de cumplimiento de sus objetivos ambientales, en la que alternan evaluaciones de buen estado con evaluaciones de estado moderado.

En masas de agua de la categoría **ríos** (Figura 69), la evaluación de estado ecológico determina que en **2023** el 53% de las masas de agua se diagnostican en estado/potencial ecológico bueno o muy bueno, el 34% en estado moderado y el 13% en estado deficiente o malo. En el periodo **2019-2023** se observa una relativa situación de estabilidad con un 51-61% de masas diagnosticadas en estado ecológico bueno o muy bueno y con un número reducido porcentaje de masas en estado deficiente o malo (7-15%). La anualidad con mejores resultados ha sido 2021 y esta situación se ha asociado a condiciones hidrológicas favorables, con caudales de estiaje mayores que la media.

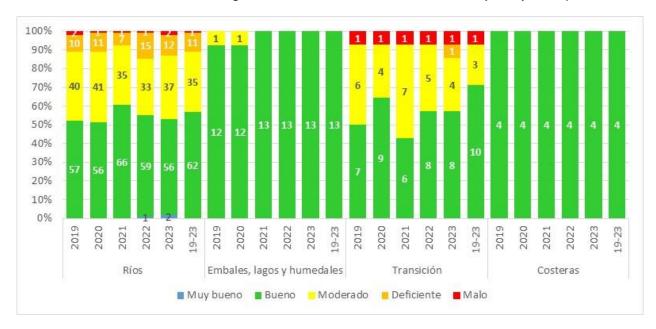


Figura 69 Evolución del estado ecológico de las masas de agua superficial (por categoría de masa de agua).

En 2023 un total de 8 masas de agua de la categoría aguas de transición (57%) se diagnostican en estado/potencial ecológico bueno, con una evolución relativamente estable (Figura 69), siendo la evaluación menos favorable en 2021 (43%) y la más favorable en 2020 (64%). Los diagnósticos de estado deficiente o malo en los años más recientes se dan en Oiartzun y Oka interior, en ambos casos con problemas relacionados con indicadores de calidad fisicoquímica y fitoplancton y, en el caso del estuario del Oiartzun también con la comunidad piscícola. En el caso de Oka interior la insuficiencia en las infraestructuras básicas de saneamiento ha sido subsanada en 2021, y los resultados más actuales de indicadores de calidad fisicoquímica ya manifiestan una mejoría que no tiene reflejo aún en el diagnóstico de calidad fisicoquímica y fitoplancton, debido a que el sistema de evaluación se basa en periodos móviles de seis años.

En cuanto a **aguas costeras** y **lagos y embalses**, se mantiene el cumplimiento de objetivos ambientales en la totalidad de las masas de agua (Figura 69). Dentro de este grupo, el embalse de Maroño es la única masa que ha presentado problemas los 2 primeros años de la serie y han estado motivados por floraciones fitoplanctónicas.

En definitiva, la situación la evaluación de estado ecológico en el periodo **2019-2023** parece relativamente estable con la existencia de masas de agua con evaluaciones oscilantes entre el buen estado ecológico y el moderado.

No obstante, la mejora del estado/potencial ecológico es menos apreciable que lo previsto inicialmente. La efectividad de algunas de las medidas implantadas en ocasiones no se refleja en el corto o medio plazo en la consecución de sus objetivos ambientales y la aplicación del principio de 'uno fuera todos fuera' en ocasiones enmascara las mejoras que experimentan determinados elementos de calidad tras la implementación de medidas. A modo de ejemplo, se exponen los siguientes casos:

Mejora del estado de calidad del estuario del Oka (Bizkaia)

El estuario del Oka es el que presenta un mejor estado de conservación de sus hábitats naturales (arenas y fangos intermareales, praderas marinas, marismas, etc.) en la demarcación, manteniendo más del 70% de su superficie original inalterada, y fue declarado Reserva de la Biosfera por la UNESCO en 1984.

Este estuario, especialmente en su zona interior (masa de agua Oka Interior transición), se ha visto históricamente afectado por vertidos urbanos e industriales. La estación EDAR de Gernika, localizada en dicha zona interior, presentaba un funcionamiento inadecuado. Sus vertidos daban lugar a concentraciones muy elevadas de amonio y fosfato y bajos valores de transparencia y oxígeno disuelto en el medio; las comunidades de fitoplancton alcanzaban frecuentemente elevadas biomasas y las comunidades de macroinvertebrados bentónicos presentaban un mal estado, lo que en conjunto determina un estado ecológico malo o deficiente en la masa de agua Oka interior transición.

En los últimos años la mayor parte de las aguas residuales de la comarca se han ido canalizando para su tratamiento en la EDAR de Lamiaran, localizada en la zona costera de Bermeo, que entró en funcionamiento en 2015. Los vertidos de Sukarrieta y Busturia se conectaron a dicho sistema en 2019, y Gernika (el vertido de mayor entidad) en el verano de 2021. Esto se ha traducido en un acusado descenso de las concentraciones de amonio y fosfato en la zona interior del estuario y en un incremento de la transparencia. Sin embargo, la mayor transparencia y la disponibilidad de nutrientes en concentraciones suficientes para dar lugar a crecimientos fitoplanctónicos podría explicar el hecho de que la recuperación de la calidad biológica del fitoplancton no haya sido inmediata. Es probable que para observar una mejoría en la calidad fitoplanctónica tengan que transcurrir unos años hasta que el sedimento deje de aportar nutrientes y otros organismos colonicen esta zona.

Pág.34 Memoria

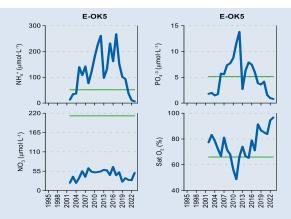


Figura 70 Evolución temporal de la concentración media anual para amonio, nitrato, fosfato y saturación de oxígeno en la estación de la masa de agua de transición Oka interior en el periodo 2002 a 2023. La línea verde indica el límite entre clases de estado Bueno y Moderado.

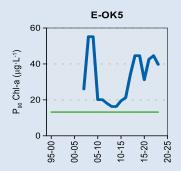


Figura 71 Evolución de la biomasa fitoplanctónica en la estación de la masa de agua de transición Oka interior. Líneas azules: percentil 90 de clorofila-a calculado con valores de superficie (pleamar y bajamar), de las cuatro épocas del año, en periodos móviles de seis años. La línea verde indica el límite entre clases de estado Bueno y Moderado para aguas oligohalinas.

En los próximos años se espera la consolidación de estas tendencias de clara mejoría en la calidad fisicoquímica de las aguas, así como una estabilización y mejora de las comunidades biológicas. Así mismo, se espera una mejora en la situación sanitaria de las playas del estuario y en las calificaciones de las zonas para la producción de moluscos.

Mejora del estado ecológico en la cuenca del Deba (Gipuzkoa)

La implantación de medidas de saneamiento y depuración de aguas residuales urbanas e industriales en la demarcación es una de las claves en la mejora del estado ecológico en sus masas de agua. Se presentan los ejemplos de los ríos Deba y Ego aguas abajo de Arrasate/Mondragon y Eibar respectivamente.

En las siguientes gráficas se presenta la evolución de las condiciones fisicoquímicas generales (amonio, nitrato, DBO5, DQO y PO4, representados en valores normalizados con respecto a la referencia de buen estado) en los puntos de control DEB202 (río Deba aguas abajo de Arrasate/Mondragon, masa de agua Deba-B) y DEG068 (río Ego aguas abajo de Eibar, masa de agua Ego-A). Así mismo, se representa para los mismos puntos la evolución de los indicadores biológicos (macroinvertebrados, diatomeas y fauna piscícola).

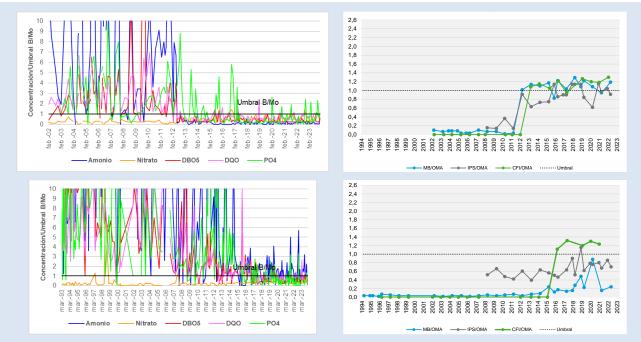


Figura 72 Evolución de condiciones fisicoquímicas generales y de indicadores biológicos (macroinvertebrados-MB, diatomeas-IPS y fauna piscícola-CFI) en los puntos de control DEB202 (superior) y DEG068 (inferior). Valores normalizados con respecto a la referencia de buen estado.

La puesta en marcha en 2012 de la EDAR Epele, que trata las aguas residuales de Arrasate y su entorno, dio lugar a una mejora sustancial de la calidad de las aguas en el Deba (DEB202), acompañada de una rápida mejora de los índices bióticos, aunque más lenta y aún no plena en el caso del fitobentos, motivo por el que todavía no logra el buen estado ecológico.

En el río Ego, que ha sido en décadas pasadas uno de los más contaminados del País Vasco, la conexión de las aguas residuales de Eibar a la EDAR de Apraitz en 2015 ha dado lugar al inicio de la mejora paulatina de las condiciones fisicoquímicas y de los indicadores biológicos, pero aún persisten vertidos urbano-industriales insuficientemente depurados, que provocan todavía frecuentes incumplimientos en los objetivos de carga orgánica, fosfatos y amonio, y que repercuten en los índices bióticos. En esta cuenca están programadas actuaciones de saneamiento relevantes en Ermua y Mallabia que deben conducir a la progresiva recuperación del estado de esta masa de agua en los próximos años.

Estado químico

A continuación, se muestra la evaluación de estado químico de las masas de agua superficial de la demarcación tanto para la situación de referencia del tercer ciclo de planificación (diagnóstico realizado en el Plan Hidrológico 2022-2027 en base a la información del periodo 2015-2019) como para el año 2023.

Pág.36 Memoria

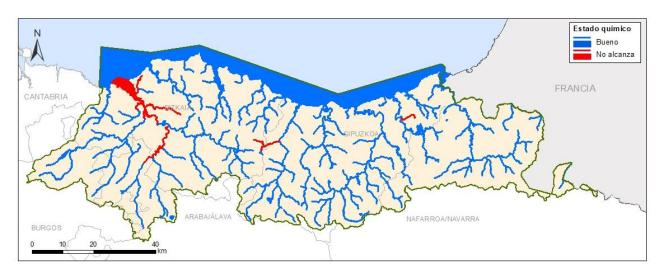


Figura 73 Estado químico de las masas de agua superficial. Situación de referencia 3er ciclo de planificación.

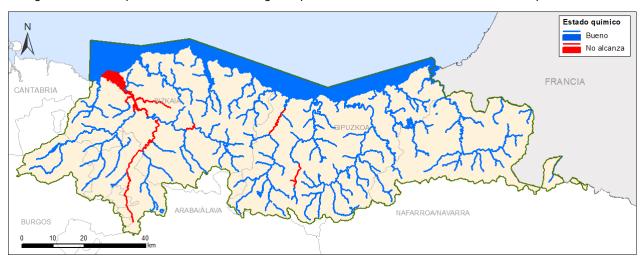


Figura 74 Estado químico de las masas de agua superficial. Año 2023.

Las Administraciones de la demarcación vienen realizando un esfuerzo importante en el control del estado químico de las masas de agua, adaptando los programas de control en función de las disponibilidades técnicas analíticas, presupuestarias y de la identificación de vertidos significativos en la masa o masas adyacentes. Este control químico en la matriz agua implica con carácter general el control de metales y metaloides. En determinados puntos la lista de sustancias prioritarias objeto de control se amplía al global del Anexo IV del Real Decreto 817/2015; y en algunos casos, además, se realizan controles en biota y sedimento.

Tal y como se indicó en informes de seguimiento de previos, en años anteriores la evaluación de estado químico a nivel de masa de agua se realizaba según la evaluación de la denominada "estación representativa" de la masa. Sin embargo, a partir del año 2019 se reconsideró este método de evaluación, procediéndose a evaluar el grado de cumplimiento que se da en la masa, es decir, para que el estado químico sea calificado como bueno se deben cumplir las normas de calidad ambiental (NCA) en todos los puntos de control y para todos los parámetros controlados (esta reconsideración del método se ha aplicado a la evaluación del estado químico para el periodo 2015-2023).

También es importante indicar que en la campaña de 2019 entraron en vigor revisiones de normas de calidad ambiental para antraceno, difeniléteres bromados, fluoranteno, plomo, naftaleno, níquel e hidrocarburos policíclicos aromáticos (sustancias números 2, 5, 15, 20, 22, 23 y 28 del anexo IV

del Real Decreto 817/2015 para las sustancias prioritarias y otros contaminantes), más exigentes que las existentes hasta el momento.

La aplicación de estos criterios indica que el estado químico del conjunto de masas de agua superficial debe considerarse relativamente estable en el periodo 2019-2023 (Figura 75), con una ligera tendencia favorable, y con un número muy reducido de masas de agua diagnosticadas en estado químico malo y un número reducido de problemáticas consideradas como consolidadas.

Figura 75 Evolución del estado químico de las masas de agua superficial.

Los parámetros que han condicionado el buen estado químico en el periodo 2019-2023 en la matriz agua han sido, entre otros, níquel, benzo(a)pireno, y hexaclorociclohexano (HCH). En muchos casos se tratan de superaciones de norma aislados que no se repiten en varias anualidades, es decir, no se identifica la existencia de problemática o foco de contaminación consolidado sobre el que actuar mediante medidas correctoras. Por tanto, deben considerarse como situaciones puntuales, que requieren proseguir con el esfuerzo en el control y seguimiento de vertidos, sean accidentales o no. Sin embargo, el hexaclorociclohexano se ha manifestado de forma crónica en determinadas masas (Nerbioi/Nervión Interior transición, Nerbioi/Nervión Exterior transición y Asua-A)

En relación con el estado químico de **ríos** la situación en el periodo 2019-2023 debe considerarse estable con carácter general. En 2023 no se alcanza el buen estado químico en 6 masas (Río Nervión I, Río Nervión II, Río Ibaizabal III, Asua-A, Urola-B y Deba-D).

El número de masas que en alguna anualidad del periodo 2019-2023 "no alcanza el buen estado químico" es reducido (10%). Se ha diagnosticado mal estado químico durante tres o más anualidades en 3 masas (2%) (Asua-A por HCH; Río Nerbioi II por níquel; y por diferentes compuestos en Río Nerbioi I); por otro lado, en 11 masas se identifican anomalías puntuales de estado químico en una o dos anualidades del periodo.

Tras la ejecución de una investigación detallada en Jaizubia-A y Oiartzun-A se concluye que las frecuentes superaciones de norma de calidad para cadmio en estas dos masas de agua se corresponden con fondos naturales y por tanto se asocia a buen estado químico.

En **lagos y embalses**, todas las masas de agua se encuentran en buen estado químico en 2023. En el año 2022, por primera vez el embalse de Maroño no alcanzó el buen estado químico por cipermetrina, si bien en 2023 ha vuelto a una situación de cumplimiento.

Pág.38 Memoria

En el caso de **aguas de transición** se da una situación estable, dos masas mantienen su diagnóstico de "*no alcanza el buen estado químico* (Nerbioi/Nervión Interior y Nerbioi/Nervión Exterior por Hexaclorociclohexano). Las restantes 12 masas presentan buen estado químico durante todo el periodo 2019-2023.

En cuanto a **aguas costeras** se mantiene el cumplimiento de objetivos ambientales que ya se daba en la situación de referencia del tercer ciclo de planificación (Figura 76).

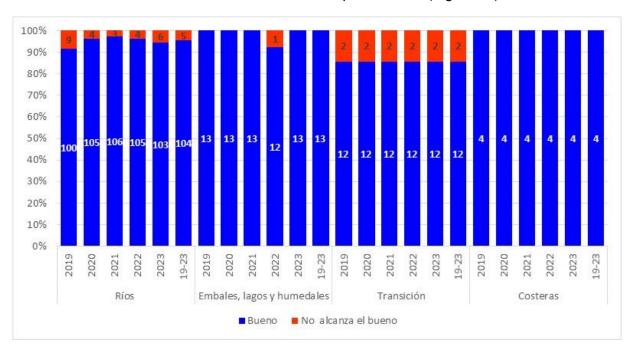


Figura 76 Evolución del estado químico de las masas de agua superficial (por categoría de masa de agua).

Estado

A continuación, se muestra la evaluación de estado de las masas de agua superficial de la Demarcación en la situación de referencia del tercer ciclo de planificación y en el año 2023.

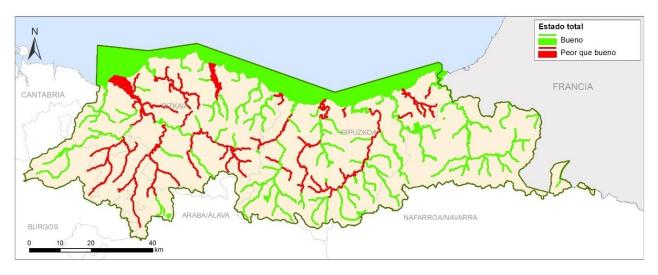


Figura 77 Estado global de las masas de agua superficial. Situación de referencia 3er ciclo de planificación.

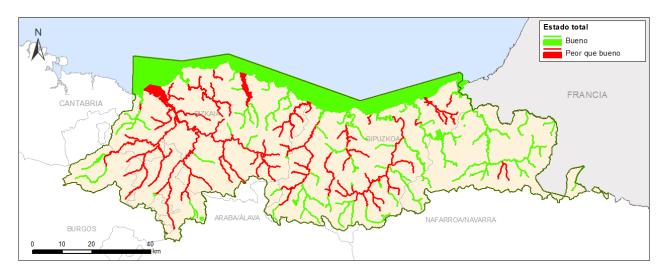


Figura 78 Estado global de las masas de agua superficial. Año 2023.

En concordancia con lo indicado para el estado ecológico y el estado químico, la situación del conjunto de masas de agua superficial en el periodo 2019-2023 debe considerarse estable con carácter general (Figura 79), con ligera mejoría respecto a los primeros años del periodo.

En 2023 un total de 82 masas (59%) obtienen un buen estado; 37 masas (26%) presentan un estado ecológico moderado y un buen estado químico, lo que implica una situación cercana al cumplimiento de objetivos ambientales; y 21 masas (15%) presentan situaciones alejadas del cumplimiento de objetivos ambientales, es decir, con estado químico malo (8) y/o estados ecológico deficiente (13) o malo (3). Por categorías, las aguas costeras y los lagos y embalses todas las masas de agua obtienen el buen estado y en el caso de los ríos y las aguas de transición logran el buen estado el 52% y 57% de las masas, respectivamente.

Tal y como se ha comentado con anterioridad, el progresivo desarrollo del programa de medidas debe reforzar los actuales avances en la consecución de objetivos ambientales, especialmente en esas masas que actualmente muestran estados cercanos al bueno.

Figura 79 Evolución del estado de las masas de agua superficial.

Pág.40 Memoria

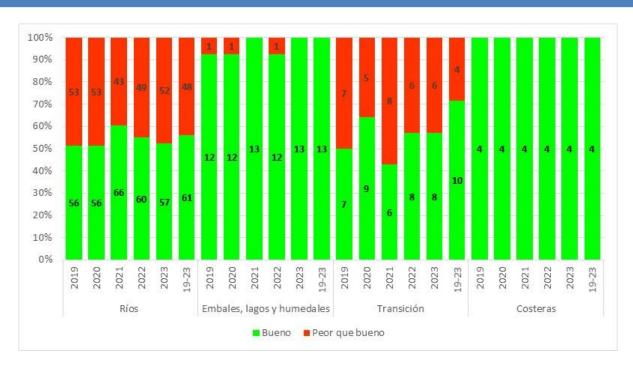


Figura 80 Evolución del estado de las masas de agua superficial (por categoría de masa de agua).

6.3 MASAS DE AGUA SUBTERRÁNEA

La evaluación del **estado cuantitativo** de las masas de agua subterránea en el año 2023 es la misma respecto al escenario de referencia del tercer ciclo del Plan Hidrológico, en el que se diagnostica una masa de agua subterránea en mal estado cuantitativo, Ereñozar, debido a la afección del sondeo Olalde-B al manantial Olalde (ubicados en el sector homónimo de la masa de agua) y, en consecuencia, a los caudales circulantes de la regata relacionada (Figura 81 y Figura 83). Es preciso indicar que este incumplimiento se produce en un sector concreto de la masa de agua. Sin embargo, la evaluación del estado cuantitativo se realiza a nivel de masa, incluyendo por tanto sectores que no están afectados por esta problemática.

La evaluación del **estado químico** de las masas de agua en el año 2023 no registra cambios respecto al escenario de referencia del tercer ciclo del Plan Hidrológico (Figura 82 y Figura 83). Es decir, todas las masas de agua se encuentran en buen estado químico excepto Gernika. El incumplimiento de los objetivos medioambientales en esta masa de agua se debe a las concentraciones de compuestos orgánicos volátiles y mercurio registradas en algunos de los puntos de control establecidos para la evaluación de la masa, si bien estas concentraciones están disminuyendo progresivamente con carácter general.

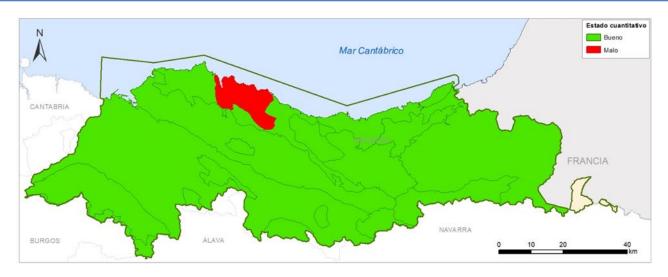
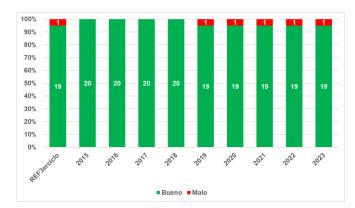



Figura 81 Estado cuantitativo de las masas de agua subterránea. Año 2023.

Figura 82 Estado químico de las masas de agua subterránea. Año 2023.

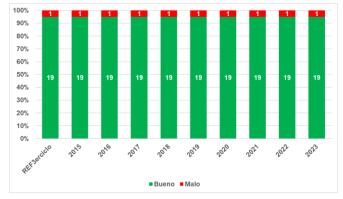


Figura 83 Evolución del estado de las masas de agua subterránea. Estado cuantitativo izquierda y estado químico derecha

A partir de la evaluación de los estados cuantitativo y químico de las masas de agua subterránea en el año 2023 expuesta anteriormente, se concluye que todas las masas de agua subterránea de la Demarcación cumplen los objetivos medioambientales de la Directiva Marco del Agua excepto Gernika, que se encuentra en mal estado químico; y Ereñozar, por mal estado cuantitativo.

Pág.42 Memoria

6.4 ZONAS PROTEGIDAS

En las masas de agua situadas en zonas protegidas es obligatorio, no solo el cumplimiento de los objetivos ambientales generales de la DMA de alcanzar el buen estado, sino también el cumplimiento de los objetivos específicos establecidos en los planes de gestión elaborados y aprobados específicamente para cada una de esas zonas protegidas.

Zonas de captación de agua para abastecimiento

Los programas de seguimiento de las zonas de captación de aguas para abastecimiento indican que, con carácter general, se cumplen los requisitos adicionales de este tipo de zona protegida en las aguas subterráneas y superficiales destinadas a estos usos. En el caso de aguas superficiales se han detectado algunos incumplimientos aislados, poco significativos, y no continuados en el tiempo.

Esta situación es similar a la diagnosticada atendiendo a la calidad del agua de abastecimiento según criterios sanitarios. En 2023, el 99,1% de la población abastecida en Gipuzkoa y el 99,5% de la de Bizkaia, ámbitos que comprenden la mayor parte de la población de la demarcación, se abastece con aguas con la calificación sanitaria satisfactoria.

		Bizkaia								Gipuzkoa						
Calificación sanitaria	2016	2017	2018	2019	2020	2021	2022	2023	2016	2017	2018	2019	2020	2021	2022	2023
Satisfactoria	98,2	99,8	97,2	99,1	99,9	99,8	99,5	99,5	99,7	99,9	99,6	99,4	99,9	99,6	99,6	99,1
Tolerable	1,4	0,1	2,5	0,7	0,0	0,1	0,4	0,4	0,2	0,0	0,3	0,4	0,1	0,3	0,3	0,6
Deficiente	0,3	0,2	0,3	0,2	0,1	0,1	0,1	0,1	0,0	0,0	0,1	0,2	0,0	0,1	0,1	0,2

Tabla 7 Porcentaje de población según la calificación de la calidad del agua de consumo abastecida. Bizkaia y Gipuzkoa. (Fuente: Departamento de Salud. Gobierno Vasco).

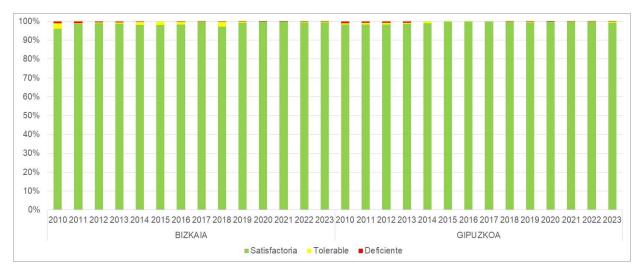


Figura 84 Evolución del porcentaje de población según la calificación de la calidad del agua de consumo abastecida. Bizkaia y Gipuzkoa (Fuente: Departamento de Salud. Gobierno Vasco).

Zonas de baño

Tal y como se explica en el apartado 10 del presente informe, actualmente el censo de aguas de baño de la Demarcación cuenta con 40 zonas de baño, 38 de ellas en aguas de transición y costeras, y 2 en aguas continentales. A continuación, se muestra la evolución del diagnóstico de la calidad de las zonas de baño (Directiva 2006/7/CE) entre los años 2011 y 2023. Es preciso indicar que las calificaciones de algunas zonas de baño de la CAPV han cambiado respecto a las que se muestran en informes de seguimiento de años anteriores, debido a que el Departamento de Salud Pública del Gobierno Vasco ha realizado recientemente una revisión de estas calificaciones.

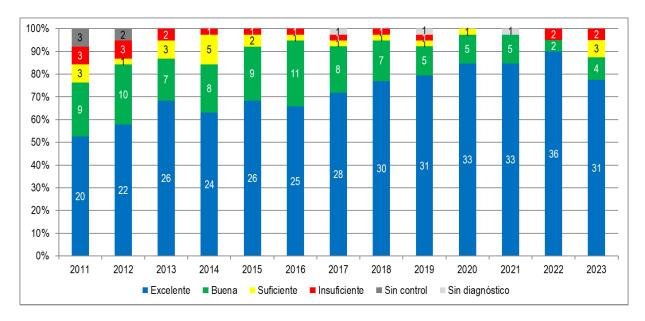
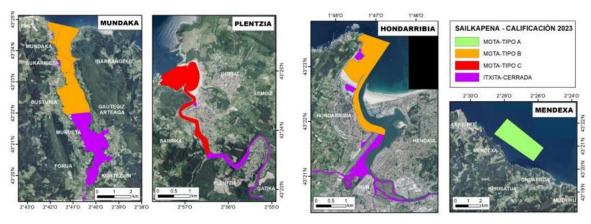


Figura 85 Evolución de la calidad de las zonas de baño en el periodo 2011-2023.

Se observa una mejora de la calidad de las aguas de baño respecto a los primeros años de control: aumenta el número de zonas con calificación excelente (de 20 a 31) y disminuyen las zonas con calidad insuficiente. Las dos zonas de baño continentales tienen calidad insuficiente en 2022 y 2023. En 2023, tres zonas de baño marítimas pasan de una calificación excelente o buena a suficiente.

Las calificaciones de las zonas de baño, los resultados analíticos y otros informes nacionales y europeos se recopilan en el Sistema de Información Nacional de Aguas de Baño (*NAYADE*): https://nayadeciudadano.msssi.es/


Zonas de producción de moluscos

La calificación de las zonas de producción de moluscos (Directiva 2006/113/CE) se ha mantenido bastante estable entre los años 2013 y 2023. En 2023 se ha producido un cambio en la Ría de Hondarribia, la subzona "Desde la desembocadura hasta el puntal del aeropuerto" pasa de la categoría C a la B, de acuerdo con lo establecido por la *Orden de 23 de septiembre de 2023, de la Consejera de Desarrollo Económico, Sostenibilidad y Medio Ambiente*.

Pág.44 Memoria

Código zona protegida	Nombre zona protegida	Subzona	Calificación			
		Desde la desembocadura hasta el puntal del aeropuerto	В			
		Desde el puntal del aeropuerto hacia el interior	Cerrada			
A201	Ría de Hondarribia	Puerto pesquero de Hondarribia	Cerrada			
		Puerto deportivo de Hondarribia	Cerrada			
		Dársena de Veteranos	Cerrada			
		Arketas (margen derecha de la zona entre la desembocadura hasta la isla Sandinderi)	В			
		Área comprendida entre la isla Sandinderi hasta Astilleros de Murueta				
A202	Ría de Mundaka	Margen izquierda (subzona de Portuondo) entre la desembocadura hasta la isla Sandinderi	В			
		Aguas arriba de Astilleros Murueta hasta Gernika	Cerrada			
		Área bajo el puente de la Isla de Txatxarramendi	Cerrada			
		Puerto de Mundaka	Cerrada			
4000	D' I DI ()	Zona comprendida entre la desembocadura y Arrainola, excepto puerto de Plentzia	С			
A203	Ría de Plentzia	Puerto de Plentzia	Cerrada			
		Zona interior del estuario, aguas arriba de Arrainola	Cerrada			

Tabla 8 Calificación de las zonas de producción de moluscos bivalvos. Año 2023.

Α

Figura 86 Clasificación de las zonas de producción de moluscos bivalvos. Año 2023.

Tramo litoral ubicado entre Ondarroa y Lekeitio

A204

6.5 REGISTRO DE LAS SITUACIONES DE DETERIORO TEMPORAL DEL ESTADO DE LAS MASAS DE AGUA

El artículo 18 de la Normativa del Plan Hidrológico establece, para una situación de deterioro temporal de una o varias masas de agua, las condiciones en virtud de las cuales pueden declararse circunstancias como racionalmente imprevistas o excepcionales (graves inundaciones, sequías prolongadas, accidentes no previsibles razonablemente, incendios forestales u otros fenómenos naturales).

Asimismo, el citado artículo determina que se llevará un registro de los deterioros temporales que tengan lugar durante el periodo de vigencia del Plan, describiendo y justificando los supuestos de deterioro temporal y los efectos producidos, e indicando las medidas tomadas tanto para su reparación como para prevenir que dicho deterioro pueda volver a producirse en el futuro.

En el año 2023 no se han registrado situaciones de deterioro temporal en el sentido del artículo 10 de la Normativa del Plan Hidrológico.

6.6 REGISTRO DE NUEVAS MODIFICACIONES O ALTERACIONES

El artículo 19 de la Normativa del Plan Hidrológico establece que, para las nuevas modificaciones o alteraciones no previstas, se observará lo dispuesto en el artículo 39.2 del RPH. Asimismo, se llevará un registro de las nuevas modificaciones o alteraciones no previstas en el Plan.

En el año 2023 no se han registrado nuevas modificaciones o alteraciones en el sentido del artículo 19 de la Normativa del Plan Hidrológico.

- La evolución de estado de las aguas superficiales desde 2019 hasta la actualidad (periodo en el que se aplica el mismo sistema de evaluación a los resultados de las anualidades) determina una situación general de estabilidad, con ligera mejoría y ausencia de deterioro. En la evaluación del periodo, resulta relevante el reducido número de masas muy alejadas del buen estado (12%) y el mantenimiento de alrededor del 63% de masas en buen estado.
- En aguas superficiales el mayor grado de cumplimiento de objetivos medioambientales se dan en aguas costeras, lagos y embalses. Los incumplimientos de buen estado se corresponden con estado ecológico moderado o inferior, dándose relativamente pocos problemas de estado químico.
- Se cumplen los objetivos medioambientales en todas las masas de agua subterránea de la Demarcación excepto en dos casos (Gernika, mal estado químico; y Ereñozar, mal estado cuantitativo).
- La situación es de avance hacia la consecución de objetivos ambientales, especialmente en aguas de transición, si bien menos pronunciado que lo previsto inicialmente en el plan hidrológico y en su programa de medidas. El progresivo desarrollo del programa de medidas debe reforzar los actuales avances en la consecución de objetivos ambientales, especialmente en esas masas que actualmente muestran estados cercanos al bueno.
- Se observa un alto nivel de cumplimiento de los objetivos específicos de zonas protegidas especialmente en zonas de captación de aguas para abastecimiento y en zonas de baño.
- En 2023 no se ha registrado ninguna situación de deterioro temporal.
- No se han registrado nuevas modificaciones o alteraciones en el sentido del artículo 19 de la Normativa del Plan Hidrológico.

Pág.46 Memoria

7. INUNDACIONES

El Plan de Gestión del Riesgo de Inundación (PGRI) de la DH del Cantábrico Oriental correspondiente al ciclo 2022-2027 fue aprobado por el *Real Decreto 197/2023, de 21 de marzo, por el que se aprueba la revisión y actualización del plan de gestión del riesgo de inundación de la parte española de la demarcación hidrográfica del Cantábrico Oriental (BOE nº 69, de 22 de marzo de 2023). Este documento, que constituye el Anejo XV del Plan Hidrológico de la demarcación, incluye una descripción de los resultados de las fases precedentes de implantación de la Directiva de Inundaciones (EPRI y MAPRI) y una síntesis de las herramientas y procedimientos existentes de actuación ante inundaciones (sistemas de información y predicción hidro-meteorológica y planes de Protección Civil), así como una descripción de los objetivos generales para la demarcación en relación con la gestión del riesgo de inundación. Las partes más relevantes del PGRI son el programa de medidas, en el que se detallan y justifican una serie de medidas para alcanzar los objetivos fijados y que se distribuyen en cuatro grupos fundamentales: medidas de prevención, medidas de protección, medidas de preparación y, finalmente, medidas de recuperación y evaluación; y su normativa sobre ordenación de usos del suelo en función del riesgo, que se refiere explícitamente a la que figura en la Normativa del Plan Hidrológico.*

Las Administraciones Hidráulicas de la demarcación elaboran anualmente un **informe de seguimiento del PGRI**, que constituye la principal herramienta para la evaluación de la consecución de los objetivos del PGRI. El citado informe consta de 5 capítulos y dos anexos, que incluyen los siguientes contenidos:

- Resumen del *marco normativo* que regula el seguimiento del PGRI (Capítulo 1).
- Breve exposición de la metodología empleada para elaborar el informe en cuanto a recopilación, transmisión, registro y actualización de la información (Capítulo 2).
- Descripción de los *principales eventos de inundación* acaecidos en el año objeto de análisis (Capítulo 3).
- Información detallada sobre las medidas: Descripción de las principales actuaciones implementadas durante el año (Capítulo 4); resumen global del estado las medidas por ámbito y por tipo de medida (Capítulo 5); listado de indicadores de seguimiento de las medidas (Anexo I) y listado detallado de las medidas con indicación de su estado (Anexo II).

Durante el año 2023 se registraron algunos episodios de avenida en las cuencas de la Demarcación Hidrográfica del Cantábrico Oriental. En general, estos episodios de avenida fueron de carácter leve y las inundaciones que se produjeron tuvieron impactos moderados.

En el epígrafe 9.3 se recoge una síntesis de las principales actuaciones ejecutadas en 2023 en materia de inundabilidad. Para más información puede consultarse el Informe de seguimiento del PGRI 2022:

- Agencia Vasca del Agua:
 https://www.uragentzia.euskadi.eus/seguimiento-del-plan-de-gestion-del-riesgo-de-inundacion-2022-2027/webura00-01020202revisionplan/es/
- Confederación Hidrográfica del Cantábrico: https://www.chcantabrico.es/planes-de-gestion-del-riesgo-de-inundacion

7.1 Principales eventos en el año 2023

En este epígrafe se describen los episodios de avenida tomando como referencia los umbrales definidos en las estaciones de aforo de la demarcación.

La red de control hidrometeorológico del País Vasco cuenta con 71 estaciones de aforo o puntos hidrométricos automáticos en la demarcación. Estas estaciones poseen tres umbrales en función del impacto de las avenidas:

- **Nivel amarillo**: Nivel de <u>aviso</u> cuando el nivel del río alcanzado hace preciso realizar una labor de seguimiento intensivo de la seguridad del cauce.
- Nivel naranja: Nivel de <u>alerta</u> que se activa cuando el río se ha salido del cauce, de forma que genera los primeros problemas de inundación en carreteras, casas o instalaciones. Es el inicio de los daños materiales.
- **Nivel rojo**: Nivel de <u>alarma</u> cuando las zonas inundadas son importantes. Se pueden producir daños importantes en infraestructuras, zonas industriales y viviendas.

La Confederación Hidrográfica del Cantábrico, por su parte, dispone de 10 estaciones de aforo en el ámbito de la demarcación. Estas estaciones definen tres umbrales de referencia en función del riesgo:

- **Nivel amarillo**: Nivel de <u>seguimiento</u> en el que no existe un riesgo para la población en general, aunque sí para alguna actividad concreta.
- **Nivel naranja**: Nivel de <u>pre-alerta</u>, caracterizado por un riesgo importante.
- **Nivel rojo**: Nivel de <u>alerta</u>, asociado a un riesgo extremo.

En la tabla siguiente se resumen los episodios de avenida registrados en el año 2023, definidos en función de la superación de los umbrales de alerta fijados en las estaciones de aforo de la de la red de control hidrometeorológico del País Vasco:

Episodio	Supera	ción de um	brales	Cuencas afectadas			
Lpisodio	Amarillo	Naranja	Rojo	Guerreas arectadas			
16-19 de enero de 2023	7	2	1	Artibai, Asua, Butroe, Deba, Gobela, Cadagua, Oria y Urola			
14 de mayo de 2023	6	6 -		Oria, Urola, Urumea			
20 de mayo de 2023	1	2	1	Oria y Urumea			
11 de septiembre de 2023	2	-	2	Artibai y Deba			
21 de noviembre de 2023	3	-	-	Bidasoa y Urumea			

El episodio de avenida más importante se produjo el 11 de septiembre de 2023 en la cuenca del río Artibai, especialmente en el río Urko.

Figura 87 Nivel del río Urko en la estación de Markina el 11 de septiembre de 2023.

Pág.48 Memoria

Como consecuencia de esta avenida, se produjeron inundaciones en el núcleo urbano de Etxebarria, coincidiendo con el ARPSI ES017-BIZ-ART-02, donde hubo afecciones a varias edificaciones y cortes de vías de comunicación. También se produjeron inundaciones localizadas en otros pequeños núcleos de población de la cuenca del río Artibai, tanto en el término municipal de Etxebarria como en el de Markina-Xemein. Durante este episodio de inundación se produjeron daños materiales moderados, especialmente en bajos de viviendas y garajes, así como desperfectos en muros.

Figura 88 Inundación del 11 de septiembre de 2023 en la localidad de Etxebarria.

Aunque el impacto de la avenida de los días 16-19 de enero de 2023 fue menor en términos de daños materiales, este episodio tuvo un carácter más prolongado y afectó a un mayor número de cuencas. Durante esta avenida se produjeron algunos daños materiales de diversa importancia, especialmente en Bizkaia. En la cuenca del río Gobela el agua entró en bajos y locales y fue necesario retirar vehículos de algunas zonas de riesgo. En la cuenca del río Butrón se produjeron cortes de carreteras y se inundaron algunas viviendas. Finalmente, en la cuenca del río Asua se produjo el corte de la carretera BI-735 y fue necesario evacuar un autobús escolar que había quedado atrapado en una balsa de agua.

El resto de las avenidas ocurridas en la demarcación a lo largo del año 2023 no llegaron a generar daños de importancia.

 Durante el año 2023 se registraron cinco episodios de avenida en las cuencas de la Demarcación Hidrográfica del Cantábrico Oriental, aunque fueron eventos de alcance moderado y los daños registrados fueron relativamente pequeños en comparación con otros episodios de mayor magnitud. Tampoco se han registrado inundaciones costeras o fenómenos de inundación pluvial relevantes en el ámbito de la demarcación.

8. SEQUÍAS

El artículo 89 ter del RPH establece que, además del seguimiento que se debe realizar mensualmente para los Planes Especiales de Sequía (PES), en los informes anuales de seguimiento de los planes hidrológicos se incluirá un resumen correspondiente al seguimiento del PES durante ese mismo periodo.

En el ámbito de las Cuencas Internas, el PES vigente se elaboró en paralelo con el Plan Hidrológico del cuarto ciclo y el PGRI, con el objeto de asegurar la plena compatibilidad de todos los instrumentos de la planificación del agua y aprovechar sinergias, y fue aprobado mediante Resolución de 16 de septiembre de 2022 del Director General de la Agencia Vasca del Agua, por la que se ordena la publicación del Acuerdo de Consejo de Gobierno de 26 de julio de 2022, por el que se aprueba el Plan especial de actuación ante situaciones de alerta y eventual Sequía de las Cuencas Internas del País Vasco (BOPV nº 184, de 16 de septiembre de 2022). Este PES se incluye como Anejo XVI de la Memoria del PH de la DH del Cantábrico Oriental.

En lo que se refiere a las cuencas intercomunitarias, el PES vigente se aprobó mediante la *Orden TEC/1399/2018*, de 28 de noviembre, por la que se aprueba la revisión de los planes especiales de sequía correspondientes a las demarcaciones hidrográficas del Cantábrico Occidental, Guadalquivir, Ceuta, Melilla, Segura y Júcar; a la parte española de las demarcaciones hidrográficas del Miño-Sil, Duero, Tajo, Guadiana y Ebro; y al ámbito de competencias del Estado de la parte española de la demarcación hidrográfica del Cantábrico Oriental. En la actualidad, este PES se encuentra en proceso de revisión y actualización.

Ambos PES incorporan un sistema de indicadores y escenarios de situación para las distintas Unidades Territoriales, como elementos sustantivos de las estrategias de gestión de la sequía. Asimismo proponen una serie de acciones y medidas orientadas a facilitar el cumplimiento de los objetivos específicos, que son garantizar la disponibilidad de agua requerida para asegurar la salud y la vida de la población, evitar o minimizar los efectos negativos de la sequía sobre el estado de las masas de agua y minimizar los efectos negativos sobre las actividades económicas, acciones y medidas que se activarían escalonadamente en respuesta a la evolución de los indicadores y los diferentes escenarios que se presenten.

Dentro de los PES se refieren a dos aspectos claramente diferenciados. Por un lado, a las situaciones de **sequía** asociadas a la disminución de la precipitación y de los recursos hídricos en régimen natural y sus consecuencias sobre el medio natural y por otro, a las situaciones de **escasez** coyuntural, asociadas a problemas temporales de falta de recurso para la atención de las demandas de los diferentes usos socioeconómicos del agua.

En los siguientes epígrafes se describe la evolución de los indicadores de sequía prolongada y escasez en las diferentes unidades territoriales en el año hidrológico 2022-2023. Asimismo, en el epígrafe 8.3 se recoge una síntesis de las principales actuaciones ejecutadas en 2023 en materia de sequías. Para más información pueden consultarse los informes de seguimiento mensuales tanto del PES de las Cuencas Internas del País Vasco, como del PES de la DH del Cantábrico Oriental en el ámbito de competencias del Estado.

8.1 INDICADORES DE SEQUÍA PROLONGADA

A continuación, se muestran los indicadores de sequía prolongada correspondientes al año hidrológico 2022-2023, que se calculan mensualmente por Unidades Territoriales de Sequía (UTS).

Pág.50 Memoria

Ámbito	Unidad Territorial	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep
	UT01 Barbadun	N	N	N	N	N	N	N	N	N	N	N	N
	UT02 Nerbioi-Ibaizabal	N	N	N	N	N	N	N	N	N	N	N	N
	UT03 Butroe	N	N	N	N	N	N	N	N	N	N	N	N
	UT04 Oka	SP	N	N	N	N	N	SP	N	N	N	SP	N
	UT05 Lea	N	N	N	N	N	N	SP	N	N	N	SP	N
Cuencas Internas	UT06 Artibai	N	N	N	N	N	N	N	N	N	N	N	N
del País Vasco	UT07 Deba	N	N	N	N	N	N	N	N	N	N	N	N
	UT08 Urola	N	N	N	N	N	N	N	N	N	N	N	N
	UT09 Oria	N	N	N	N	N	N	N	N	N	N	N	N
	UT10 Urumea	N	N	N	N	N	N	N	N	N	N	N	N
	UT11 Oiartzun	N	N	N	N	N	N	N	N	N	N	N	N
	UT12 Bidasoa	N	N	N	N	N	N	N	N	N	N	N	N
	UTS 1 Nervión	N	N	N	N	N	N	SP	SP	N	N	N	N
Cuencas	UTS 2 Oria	N	N	N	N	N	N	SP	N	N	N	N	N
intercomunitarias DH del Cantábrico Oriental	UTS 3 Urumea	N	N	N	N	N	N	SP	N	N	N	N	N
	UTS 4 Bidasoa	N	N	N	N	N	N	SP	N	N	N	N	N
	UTS 5 Ríos Pirenaicos	N	N	N	N	N	N	SP	N	N	N	N	N

N= Normalidad; SP= Sequía prolongada

Tabla 9 Evolución del indicador integrado de sequía prolongada en el año 2022-2023.

8.2 INDICADORES DE ESCASEZ

A continuación, se muestran los indicadores de escasez coyuntural correspondientes al año hidrológico 2022-2023, que se calculan mensualmente por Unidades Territoriales de Escasez (UTE).

Ámbito	Unidad Territorial	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep
	UT01 Barbadun	0,47	0,54	0,56	0,83	0,74	0,70	0,58	0,57	0,58	0,47	0,49	0,51
	UT02 Nerbioi- Ibaizabal	0,47	0,54	0,56	0,83	0,74	0,70	0,58	0,57	0,58	0,47	0,49	0,51
	UT03 Butroe	0,47	0,54	0,56	0,83	0,74	0,70	0,58	0,57	0,58	0,47	0,49	0,51
	UT04 Oka	0,29	0,64	0,58	0,83	0,47	0,44	0,35	0,49	0,41	0,38	0,27	0,56
	UT05 Lea	0,39	0,65	0,55	0,87	0,53	0,52	0,47	0,52	0,44	0,40	0,28	0,64
Cuencas Internas	UT06 Artibai	0,42	0,63	0,55	0,86	0,56	0,54	0,50	0,58	0,53	0,48	0,42	0,60
del País Vasco	UT07 Deba	0,81	0,77	0,78	0,78	0,79	0,79	0,77	0,75	0,74	0,73	0,71	0,71
	UT08 Urola	0,61	0,57	0,63	0,76	0,95	0,94	0,91	0,92	0,91	0,90	0,90	0,94
	UT09 Oria	0,88	0,77	0,64	0,77	0,77	0,74	0,73	0,84	0,82	0,78	0,77	0,77
	UT10 Urumea	0,53	0,76	0,65	0,78	0,57	0,61	0,63	0,96	0,93	0,66	0,69	0,91
	UT11 Oiartzun	0,51	0,74	0,69	0,72	0,48	0,58	0,63	0,64	0,55	0,52	0,59	0,74
	UT12 Bidasoa	0,68	0,84	0,99	0,99	1,00	0,99	1,00	0,99	0,98	0,99	1,00	1,00
	UTE 1 Nervión	0,47	0,54	0,56	0,83	0,74	0,70	0,58	0,57	0,58	0,47	0,49	0,51
Cuencas intercomunitarias	UTE 2 Oria	0,88	0,77	0,64	0,77	0,77	0,74	0,73	0,84	0,82	0,78	0,77	0,77
DH del Cantábrico	UTE 3 Urumea	0,53	0,76	0,65	0,78	0,57	0,61	0,63	0,96	0,93	0,66	0,69	0,91
Oriental	UTE 4 Bidasoa	0,55	0,91	0,86	0,92	0,91	0,87	0,92	0,96	0,96	1,00	0,96	1,00
	Normalidad				a I	Ale	rta		Emerg	gencia			

Tabla 10 Evolución del indicador de escasez en el año 2022-2023.

8.3 EVENTOS DE SEQUÍA EN EL AÑO 2022/23

Tal y como puede observarse en las tablas anteriores, durante la primavera del 2023 se produjeron situaciones adversas que comenzaron con las bajas precipitaciones de febrero, marzo y abril, que llevaron a indicadores de sequía prolongada en abril en buena parte de las unidades territoriales. En el mes de agosto la situación de sequía prolongada se produjo de nuevo en dos unidades: Oka y Lea.

La regulación de la que disponen la mayor parte de los sistemas de abastecimiento permitió que esa situación desfavorable de bajas precipitaciones no se trasladara de forma general a una adversa de escasez. En este sentido, los indicadores de escasez solo mostraron situación desfavorable en las unidades Oka y Lea, en agosto. Se trata de unidades con sistemas de explotación basados en recursos no regulados y con carencias para poder asegurar plenamente la adecuada garantía de abastecimiento. En ellos es necesario, y así está previsto en el plan hidrológico de la demarcación, su refuerzo estructural.

La evolución del indicador de escasez en el año hidrológico 2022/2023 en las unidades territoriales Oka y Lea ha sido la siguiente:

Figura 89 Evolución del indicador de escasez en las unidades territoriales Oka, Lea y Artibai en el año 2022-2023.

En relación con las medidas adoptadas, en el estiaje del 2023, el ente gestor del abastecimiento de las unidades territoriales Oka y Lea, el Consorcio de Aguas Bilbao Bizkaia, informó a URA de la situación de sus sistemas de abastecimiento y de las medidas que en consecuencia tenía previsto adoptar, de acuerdo con lo establecido por el PES. URA aprobó el diagnóstico realizado por el Consorcio e informó favorablemente sobre la aplicación de las medidas recogidas en las notificaciones recibidas. A continuación, se resumen dichas medidas.

Pág.52 Memoria

- Actuaciones en estados de Normalidad y Prealerta. Envío de comunicado a los municipios para concienciar sobre el uso responsable del agua, gestión optimizada de los recursos mediante la medición de caudales, instalación de vertederos para priorizar el caudal mínimo ecológico, etc.
- Actuaciones en estado de Alerta. Comunicación a los ayuntamientos sobre la prohibición de los usos suntuarios, tales como el baldeo de calles, los riegos, fuentes públicas, piscinas privadas, reducción de presiones en horario nocturno en las zonas de mayor consumo, mantener activos recursos complementarios (captación de emergencia del río Oka y sondeos de Uharka, Ajangiz y Sollube-bis), activar recursos de emergencia (captaciones de Rekalde, Oxiña y Artetxene), derivar recursos excedentes de Burgoa para complementar el servicio de los sistemas Busturia y Bermeo, etc.
- La evolución de los indicadores de sequía prolongada y escasez establecidos en los Planes Especiales de Sequías de la Demarcación, muestra que durante la primavera del 2023 se produjeron situaciones adversas que comenzaron con las bajas precipitaciones de febrero, marzo y abril, que condujeron a indicadores de sequía prolongada en abril en buena parte de las unidades territoriales En agosto en las unidades Oka y Lea se produjo de nuevo situación de sequía prolongada. Por otra parte, los indicadores de escasez mostraron situación desfavorable en las dichas dos unidades en agosto.
- Como consecuencia de lo anterior, el ente gestor del abastecimiento de las unidades territoriales Oka y Lea, el Consorcio de Aguas Bilbao Bizkaia, adoptó las medidas necesarias de acuerdo con lo establecido por el PES.

9. APLICACIÓN DE LOS PROGRAMAS DE MEDIDAS

9.1 RESUMEN DE LA APLICACIÓN DE LOS PROGRAMAS DE MEDIDAS EN EL AÑO 2023

Tal y como se observa en la Tabla 11, la inversión prevista por el Programa de Medidas para el horizonte 2027 es de 939 M€. Además, el Programa identifica 454 M€ que se trasladan a horizontes posteriores de la planificación hidrológica. El reparto de las inversiones previstas para el horizonte 2027, por tipo de medida y por entidades financiadoras, se muestra en la Figura 90.

	Horizonte 2027					
Tipo de medida	Presupuesto (M €)	%				
Cumplimiento de los objetivos medioambientales	554,1	59				
Atención a las demandas y la racionalidad del uso	230,0	25				
Seguridad frente a fenómenos extremos	113,1	12				
Gobernanza y el conocimiento	41,8	4				
TOTAL	939,0	100				

Tabla 11 Presupuesto para el horizonte 2027 por tipos de medidas. Programa de medidas de la DH del Cantábrico Oriental. PH 2022-2027.

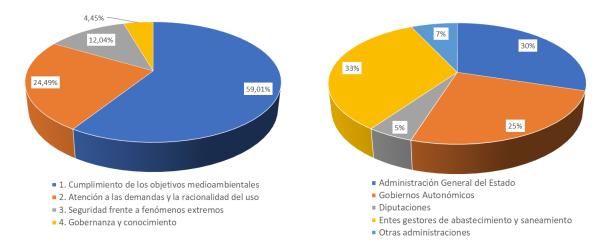


Figura 90 Presupuesto horizonte 2027 por tipos de medidas (izquierda) y entidades financiadoras de las medidas (derecha). Programa de Medidas de la DH del Cantábrico Oriental. PH 2022-2027.

La Tabla 12 y la Figura 91 muestran un resumen de la aplicación del Programa de Medidas en el año 2023. Como puede observarse, a diciembre de este año el número de medidas recogidas en este seguimiento asciende a 308 (durante el año 2023 se han llevado a cabo cuatro medidas que se han considerado adicionales). De estas, el 76,6% (236) de las medidas previstas para el horizonte 2027 se encuentran en marcha o finalizadas; el 18,5% (57) no han sido iniciadas; y se han identificado 13 medidas de las cuales no se tiene información sobre su situación, correspondientes a la Administración General del Estado⁷.

La **inversión correspondiente al año 2023 ha sido de 95,3 M€**. El 59,4% de la inversión del 2023 se ha destinado al cumplimiento de los objetivos medioambientales. El resto se ha repartido entre las medidas dirigidas a la atención a las demandas y la racionalidad del uso (16,9%), a la seguridad frente a fenómenos extremos (16,8%) y a medidas relacionadas con el conocimiento y la gobernanza (6,9%). Esta información se desarrolla en el epígrafe 9.3.

Para calcular el porcentaje de inversión ejecutada se han utilizado las cifras del plan hidrológico aprobado. El resultado es que durante el año 2023 se ha ejecutado el 10,2% de las inversiones totales previstas en el programa de medidas para el horizonte 2023.

Tipo do modido		ado (RD 35/2023): rizonte 2027	Seguimiento diciembre 2023					
Tipo de medida	Nº Inversión medidas prevista (M€)		Nº medidas		n ejecutada 2023	Situación		
	IIIculuas	previsia (ivie)	IIIculuas	M€	%			
Cumplimiento de los objetivos medioambientales	146	554,1	148	56,6	10,2	22%		

Pág.54 Memoria

-

A diciembre de 2023, hay 13 medidas sin información, de las cuales 5 corresponden a la Dirección General de Sostenibilidad de la Costa y del Mar, 5 a la Dirección General del Agua, 2 a la Confederación Hidrográfica del Cantábrico y la última a la Subdirección General para la Protección del Mar.

Tipo de medida	PH aprob Ho	ado (RD 35/2023): rizonte 2027		Seguimiento diciembre 2023					
ripo de medida	N ₀	Inversión	Nº medidas	Inversiór en	n ejecutada 2023	Situación			
	medidas	prevista (M€)	medidas	M€	%				
Atención a las demandas y racionalidad del uso	42	230,0	42	16,1	7,0	7% ON 67%			
Seguridad frente a fenómenos extremos	63	113,1	68	16,0	14,2	19% 12% 52%			
Conocimiento y gobernanza	48	41,8	50	6,6	15,8	44%			
TOTAL	299	939,0	308	95,3	10,2	405 N 10% 455 - 53%			
■ Completada-periodica	Finaliza da	■ En marcha	No inicia	da ■ Si	n informació	n Descartada			

Tabla 12 Grado de aplicación del Programa de Medidas de la DH del Cantábrico Oriental. Año 2023.

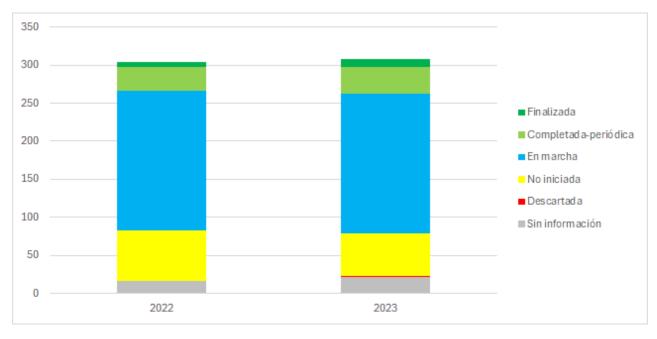


Figura 91 Evolución global de la aplicación del programa de medidas en el año 2023.

9.2 APLICACIÓN DE LOS PROGRAMAS DE MEDIDAS EN EL AÑO 2023 POR ADMINISTRACIÓN COMPETENTE

La Figura 92 muestra el reparto de las inversiones previstas por el Plan Hidrológico para el periodo 2022-2027 y de las inversiones ejecutadas durante el año 2023, por grupos de entidades financiadoras.

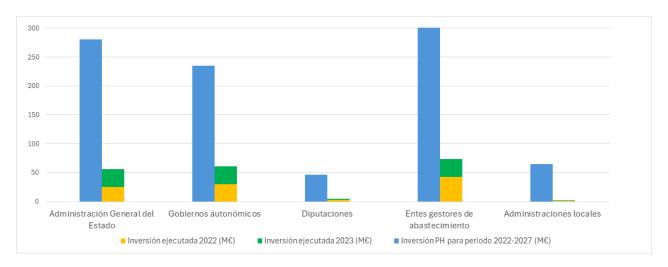


Figura 92 Inversiones previstas por el PH para el periodo 2022-2027 e inversiones ejecutadas en el año 2023, por grupos de entidades financiadoras

La inversión ejecutada por los diferentes grupos de entidades financiadoras durante el **año 2023** ha sido la siguiente:

- La Administración General del Estado ha invertido 31,6 M€. Esta cifra incluye, entre otras, las inversiones de la Confederación Hidrográfica del Cantábrico, de la Dirección General del Agua, de ACUAES y del Puerto de Bilbao.
- En relación con los gobiernos autonómicos, la inversión ejecutada por el Gobierno Vasco ha sido de 30,4 M€ (de ellos, 28,5 M€ son inversiones de la Agencia Vasca del Agua), y la inversión realizada por el Gobierno de Navarra ha sido de 0,3 M€.
- Las Diputaciones Forales han invertido 1,9 M€, todas inversiones de la Diputación Foral de Gipuzkoa.
- La inversión efectuada por los entes gestores de los servicios del agua es de 30,8 M€.
 De ellos 27,0 M€ corresponden al Consorcio de Aguas Bilbao Bizkaia, 3, M€ a Aguas de Añarbe y los 0,8 M€ restantes al Consorcio de Aguas de Gipuzkoa.
- El resto de la inversión ha sido efectuada por distintas administraciones locales.

Pág.56 Memoria

9.3 APLICACIÓN DE LOS PROGRAMAS DE MEDIDAS EN EL AÑO 2023 POR TIPOS DE MEDIDAS

A continuación, se describe el grado de aplicación de los programas de medidas durante el **año 2023** para los cuatro grupos de medidas definidos.

Cumplimiento de los objetivos medioambientales

En el año 2023 se han invertido 56,6 M€ en medidas dirigidas al cumplimiento de los objetivos medioambientales. En diciembre de ese año, el 2,03% de las medidas de este grupo se encuentran finalizadas, el 66,90 % están en marcha, el 4,05% son completadas periódicas, el 21,62% aún no se han iniciado, se han descartado el 1,5% y del 4,05 % restante se desconoce su situación.

La mayor parte de la inversión se ha destinado a actuaciones de *reducción de la contaminación* de origen urbano (45,57 M€). En particular, las principales inversiones de este tipo se han dirigido a la *Implantación de nuevas infraestructuras de depuración* (20,64 M€) y a las *medidas para el control de desbordamientos* (8,92 M€), seguidos de las *medidas para la mejora de la eficiencia de los sistemas de depuración existentes para su adaptación a los nuevos escenarios y objetivos de transición hídrica* (8,2M€).

En relación con las nuevas infraestructuras de saneamiento y depuración, en 2023 se ha avanzado en las obras de los colectores del Alto Nervión y en las EDARs de Basaurbe y Markijana, en las del saneamiento de Aginaga el Colector Ermua-Mallabia (resto, Ermua), el Saneamiento Ezkio y el Colector Muxika-Gernika (Ajangiz) entre otras.

En cuanto al control de desbordamientos, se han continuado con los trabajos en el tanque de tormentas en Zuazo-Galindo y la renovación de la Incorporación G2T2/I01 al Interceptor del Puerto (Portugalete/Sestao).

También se ha avanzado en la implementación de actuaciones de mejora de la eficiencia de los sistemas de depuración existentes, tales como la renovación y mejora del tratamiento primario de la EDAR de Galindo (Bizkaia), la incorporación del saneamiento de Arratia y Medio Ibaizabal (EDAR de Bedia) al Interceptor Nervión-Ibaizabal, la renovación y ampliación de la EDAR de Muskiz y el desvío del colector de saneamiento urbano de margen derecha del río Oiartzun en Rentería.

Finalmente, en relación con los nuevos colectores de saneamiento, se han finalizado los saneamientos de Larraitz y Ezkio y se ha avanzado en el saneamiento de Aginaga, el colector Muxika-Gernika (Ajangiz), el colector Ermua-Mallabia (resto, Ermua), el saneamiento de Mendaro, las conexiones de vertidos en trama urbana a la red de saneamiento general de Gipuzkoa y Bizkaia, la conexión del núcleo de Artziniega a la EDAR de Güeñes, la primera fase del saneamiento de Amezketa, el saneamiento de la regata Mijoa, el colector Muxika – Gernika (Muxika), y el colector Ermua-Mallabia.

Por otra parte, se han destinado 5,70 M€ a actuaciones relacionadas con la contaminación puntual por vertidos industriales como, por ejemplo, el Saneamiento del Puerto de Bilbao.

Por otra, parte, se han destinado 3,63 M€ a actuaciones relacionadas con las alteraciones morfológicas como, por ejemplo, con medidas para la restauración y rehabilitación de riberas fluviales y humedales interiores y las obras de mejora de la continuidad fluvial.

Otras líneas de trabajo que se están desarrollando están relacionadas con el control del cumplimiento de los caudales ecológicos y el control de especies invasoras (seguimiento de las poblaciones de mejillón cebra, actuaciones de control de diversas especies, etc.), así como la conservación de espacios de la Red Natura 2000 y las Reservas Hidrológicas.

Atención a las demandas y racionalidad del uso

En el año 2023 se han invertido 16,10 M€ en medidas dirigidas la atención de las demandas y la racionalidad del uso. En diciembre de 2023, el 66,67% de las medidas de este grupo se encuentran en marcha, el 26,19% aún no se han iniciado y del 7,14% restante no se dispone de información.

Las principales inversiones de este grupo se han dedicado a nuevas infraestructuras para el abastecimiento o refuerzo de las existentes, seguidas de las inversiones para la mejora de la gestión y eficiencia en los sistemas de abastecimiento. Cabe señalar que en 2023 han seguido en marcha las obras de abastecimiento en red primaria a Las Encartaciones e interconexión con recursos Kadagua, las de incorporación al sistema Añarbe/ETAP Petritegi de zonas actualmente abastecidas por aguas municipales, las de la conducción alternativa al Canal Bajo de Añarbe y las de rehabilitación del Canal Bajo Asimismo, se ha avanzado en la mejora de las redes de abastecimiento de agua potable en el ámbito del Consorcio de Aguas Bilbao Bizkaia.

Seguridad frente a fenómenos extremos

En el año 2023 se han invertido 16,04 M€ en medidas dirigidas a la seguridad frente a fenómenos extremos. En diciembre de ese año, el 11,76 % de las medidas de este grupo se encuentran finalizadas, el 61,76% están en marcha, el 5,88% son completadas periódicas, el 19,12% aún no se han iniciado, y del 1,47% restante se desconoce su situación.

En línea con lo previsto por el Programa de Medidas 2022-2027, las principales inversiones de este grupo en 2023 han sido las relacionadas con la *mejora de la resiliencia ante inundaciones* (16,0 M€) y, dentro de ellas, las *actuaciones de protección* (12,65 M€). Entre ellas se pueden destacar las obras de defensa frente a inundaciones en Beasain-Ordizia: ámbito de núcleos urbanos, las obras de defensa contra inundaciones del río Urumea en el tramo Akarregi-Ergobia, la continuación de las obras de defensa frente a inundaciones en Basauri, las obras de defesa en la regata Zlako, el casco urbano de Laudio y el de Abadiño, el acondicionamiento hidráulico y defensa contra inundaciones del arroyo Azordoiaga en Alonsotegi, las obras de defensa en Soraluze, Azpeitia, Sodupe y Tolosa y los proyectos de defensa contra inundaciones del río Cadagua en Aranguren.

Además, es preciso mencionar las *medidas de prevención y de preparación frente a inundaciones*, que han supuesto 3,17 M€. Entre ellas se encuentran la mejora de los sistemas de predicciones y alertas hidrológicas y la mejora de los sistemas de medida hidrometeorológica y la ejecución del programa conservación y mantenimiento de cauces de URA.

Tal y como se ha indicado en el apartado 7, el Informe de seguimiento del PGRI muestra de forma detallada la información relativa a la implementación de las medidas en materia de inundabilidad.

Conocimiento y gobernanza

En el año 2023 se han destinado 6,59 M€ a medidas relacionadas con el conocimiento y la gobernanza. En diciembre de 2023, el 48,00% estaban en marcha, el 44,00% de las medidas se

Pág.58 Memoria

consideraban completadas periódicas, el 2,00% no estaban iniciadas, y del 6,00% restante no se disponía de información.

Aproximadamente, el 51% del presupuesto del grupo (3,34 M€) se ha dirigido a la *mejora del conocimiento* y, en especial, a los programas de seguimiento del estado de las aguas realizados por las Administraciones Hidráulicas. Asimismo, se han destinado 3,18 M€ a la coordinación entre administraciones y gestión y 0,07 M€ a los *programas de sensibilización, formación y participación pública*.

- En el año 2023, el 76,6% (236) de las medidas previstas para el horizonte 2027 se encuentran en marcha o finalizadas; el 18,5% (57) no han sido iniciadas; y se han identificado 13 medidas de las cuales no se tiene información sobre su situación.
- La inversión ejecutada en el año 2023 asciende a 95,3M€, lo que supone un 10,2% de lo previsto en el Plan Hidrológico para el horizonte 2027.
- El reparto de la inversión realizada por tipos de medidas es el siguiente:
 - 56,6 M€ en medidas dirigidas al cumplimiento de los objetivos ambientales.
 - 16,1 M€ en medidas destinadas a la atención de las demandas y la racionalidad del uso.
 - 16,0 M€ en medidas dirigidas a la seguridad frente a fenómenos extremos.
 - 6,6 M€ en medidas relacionadas con el conocimiento y la gobernanza.
- El reparto de la inversión ejecutada por administración competente es el siguiente:
 - 31,6 M€ de la Administración General del Estado.
 - 30,7 M€ de los Gobiernos autonómicos (30,4 M€ corresponden con inversiones del Gobierno Vasco-URA).
 - 1,9 M€ de las Diputaciones Forales.
 - 3,8 M€ de los Entes gestores de abastecimiento y saneamiento.
 - Los 0,4 M€ restantes están asignados a otros financiadores.

10. ACTUALIZACIÓN DEL REGISTRO DE ZONAS PROTEGIDAS

El artículo 75 de la Normativa del Plan Hidrológico contempla la actualización periódica del Registro de zonas protegidas. En base a este artículo, se presentan a continuación los cambios que se han producido en el citado Registro en el año 2023.

Zonas de captación de agua para abastecimiento

El Registro de Zonas Protegidas incluido en la revisión del Plan Hidrológico 2022-2027 contempla 840 captaciones con un caudal superior a los 10 m³/día o que abastezca a más de 50 habitantes⁸, de acuerdo con lo establecido en el artículo 7 de la DMA (transpuesto al ordenamiento jurídico español mediante el artículo 99 bis del TRLA, el artículo 24 del RPH y apartado 4.1 de la IPH), de las cuales 561 son superficiales y 279 subterráneas. En 2023 se han revisado las captaciones para abastecimiento por lo que actualmente el Registro comprende 1011 captaciones (720 superficiales y 291 subterráneas).

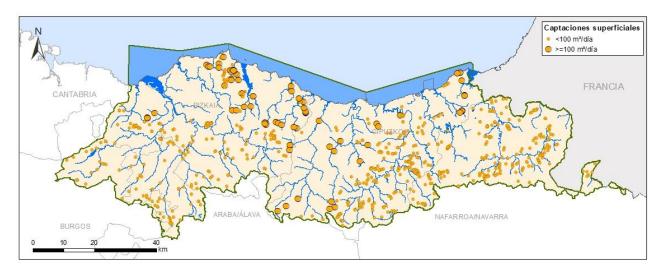


Figura 93 Zonas de captación de agua superficial para abastecimiento

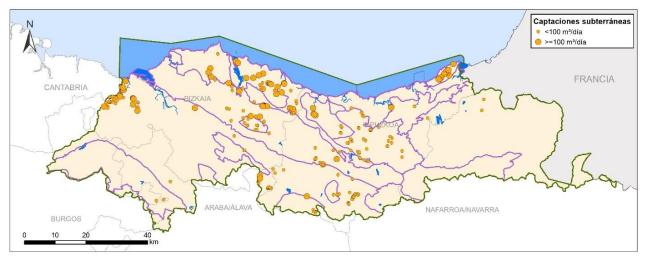


Figura 94 Zonas de captación de agua subterránea para abastecimiento

Pág.60 Memoria

⁸ En la Comunidad Autónoma de Euskadi, con el objeto de dar cumplimiento a lo estipulado en el artículo 32 de la Ley 1/2006, de Aguas de esta comunidad, se incluyen las captaciones que abastecen a más de 10 habitantes.

Zonas de producción de moluscos y otros invertebrados

El número y la cartografía de las zonas de producción de moluscos y otros invertebrados designadas de acuerdo con la Orden de 26 de septiembre de 2023, de la Consejera de Desarrollo Económico, Sostenibilidad y Medio Ambiente, por la que se establece la clasificación de las zonas de producción de moluscos bivalvos del litoral de la Comunidad Autónoma del País Vasco, se ha mantenido invariable a lo largo de los últimos años (desde el año 2016, en el que se incorpora el tramo litoral entre Ondarroa y Lekeitio). No hay ninguna nueva zona que deba ser incorporada al Registro de Zonas Protegidas.

Figura 95 Zonas de producción de moluscos y otros invertebrados

Zonas de baño

El Registro de Zonas Protegidas recogido en la revisión del Plan Hidrológico 2022-2027 contempla 40 zonas de baño, 38 de ellas en aguas de transición y costeras, y 2 en aguas continentales (Río Araxes y Río Arantzazu), designadas de acuerdo con lo establecido por la Directiva 2006/7/CE.

Figura 96 Zonas de baño

Zonas sensibles en aguas continentales y marinas

El Registro de Zonas Protegidas recogido en el Plan Hidrológico 2022-2027 contempla 12 zonas sensibles al aporte de nutrientes, de la Directiva 91/271/CEE, sobre el tratamiento de las aguas residuales urbanas.

En el año 2023 se ha procedido a revisar la declaración de zonas sensibles, de acuerdo con lo establecido en el artículo 5 de la Directiva 91/271/CEE, a través de la Resolución de 23 de febrero de 2023, de la Secretaría de Estado de Medio Ambiente, por la que se declaran las zonas sensibles en las cuencas intercomunitarias (ámbito intercomunitario de la demarcación) y de la Orden de 9 de junio de 2023, de la Consejera de Desarrollo Económico, Sostenibilidad y Medio Ambiente, por la que se revisa la declaración de las zonas sensibles en las cuencas internas y en las aguas marítimas de la Comunidad Autónoma del País Vasco y se modifica el anexo del Decreto 111/2019, de 16 de julio (ámbito intracomunitario de la demarcación).

No se han producido cambios en las zonas sensibles designadas con respecto a lo recogido en el plan hidrológico.

Figura 97 Zonas sensibles en aguas continentales y marinas

Red Natura 2000

En el Plan Hidrológico 2022-2027 se han actualizado los espacios de la Red Natura 2000 ligados al medio hídrico para su inclusión en el Registro de Zonas Protegidas. Del total de ZEC y ZEPA se han seleccionado aquellas que contienen hábitats o especies (aves, en el caso de las ZEPA declaradas en virtud de la Directiva 2009/147) relacionados con el medio hídrico de acuerdo con los criterios establecidos por la Dirección General del Agua y por la Dirección General de Biodiversidad, Bosques y Desertificación del MITERD. Como resultado de esta actualización se han integrado al Registro dos nuevos espacios RN2000: ZEPA Sierra Salvada y ZEC Arno. Por tanto, en la Demarcación Hidrográfica del Cantábrico Oriental existen actualmente 7 ZEPAs y 40 ZECs dependientes del medio hídrico.

Pág.62 Memoria

En 2023 el MITERD ha propuesto el Espacio marino Jaizkibel-Capbreton para su inclusión como Lugar de Importancia Comunitaria de la Red Natura 2000⁹. Este espacio marino será incorporado al Registro de Zonas Protegidas en cuanto sea aprobado por la Comisión Europea.

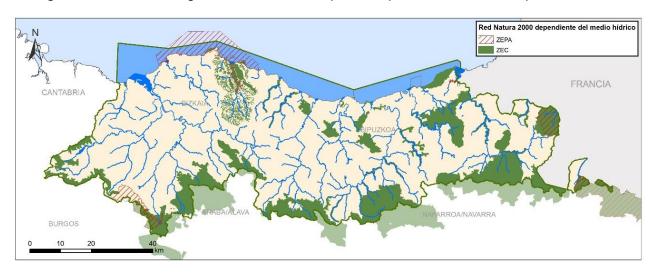


Figura 98 Red Natura 2000 dependiente del medio hídrico.

Reservas hidrológicas

El Registro de Zonas Protegidas en el Plan Hidrológico 2022-2027 incluye 6 reservas naturales fluviales y dos reservas naturales subterráneas que han sido incorporadas en el tercer ciclo de planificación (Atxerre y el Manantial del Rio Cadagua).

Figura 99 Reservas naturales fluviales.

⁹ Orden TED/1416/2023, de 26 de diciembre, por la que se aprueba la propuesta para la inclusión de seis espacios marinos protegidos en la lista de lugares de importancia comunitaria de la Red Natura 2000 y se declaran dos zonas de especial protección para las aves en aguas marinas españolas.

Figura 100 Reservas naturales subterráneas.

No se han declarado reservas naturales lacustres debido a que las zonas húmedas de la demarcación no cumplen con los requisitos establecidos para ello.

Otras zonas del registro

En las categorías del Registro de Zonas Protegidas correspondientes a Perímetros de protección de aguas minerales y termales, Zonas de protección Especial y Zonas Húmedas, el registro no ha experimentado cambios en los últimos años. En la categoría de otros espacios naturales protegidos únicamente ha cambiado la tipología de protección de los biotopos (Iñurritza, Gaztelugatxe, Deba-Zumaia, Meatzaldea-Zona Minera de Bizkaia, Itxina y Leitzaran) para adecuarlos a la tipología de espacios naturales protegidos establecida en el artículo 37 de la Ley 9/2021, de 25 de noviembre, de conservación del patrimonio natural de Euskadi¹⁰.

Por otro lado, el nuevo plan hidrológico ha incluido en el registro 829 elementos del patrimonio cultural ligados al agua dentro de *otras figuras de protección*.

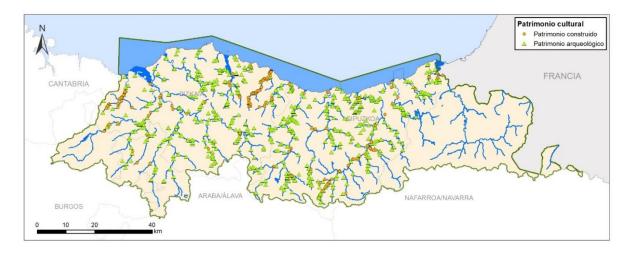


Figura 101 Patrimonio cultural ligado al agua.

Pág.64 Memoria

¹⁰ ORDEN de 20 de marzo de 2023, de la Consejera de Desarrollo Económico, Sostenibilidad y Medio Ambiente, por la que se aprueba la adaptación de la denominación de los biotopos protegidos de la Comunidad Autónoma del País Vasco.

- De acuerdo con lo establecido por la modificación del Reglamento de Planificación Hidrológica aprobada por el Real Decreto 1159/2021, el Registro de Zonas Protegidas se ha mantenido en permanente revisión con el objetivo de que su contenido esté siempre actualizado.
- En 2023 se ha realizado una revisión de las captaciones. El Registro contempla actualmente 1011 captaciones (720 superficiales y 291 subterráneas) en la demarcación.
- No se han declarado nuevas zonas de baño en 2023 ni se ha dado ninguna de baja, por lo que el Registro incluye 40 zonas de baño (38 en aguas de transición y costeras, y 2 en aguas continentales).
- En el año 2023 se han aprobado las revisiones de las declaraciones de las zonas sensibles al aporte de nutrientes, no produciéndose cambios en las zonas sensibles identificadas con respecto a las declaraciones previas.
- En el año 2023 no se han declarado nuevos espacios de la Red Natura 2000 en la demarcación. Es preciso indicar que el MITERD ha propuesto como Lugar de Importancia Comunitaria el Espacio marino Jaizkibel-Capbreton (Orden TED/1416/2023, de 26 de diciembre).
- En relación con las reservas hidrológicas no se han producido cambios en el Registro de Zonas Protegidas del Plan Hidrológico 2022-2027.
- En la categoría de otros espacios naturales protegidos se ha cambiado la tipología de protección de los biotopos para adecuarlos a la tipología de espacios naturales protegidos establecida en el artículo 37 de la Ley 9/2021, de 25 de noviembre, de conservación del patrimonio natural de Euskadi.
- En el resto de categorías del Registro de Zonas Protegidas no se han producido cambios relevantes desde la promulgación del Plan Hidrológico 2022-2027.

11. SEGUIMIENTO AMBIENTAL

La Memoria Ambiental elaborada para el ámbito de las **Cuencas Internas del País Vasco** de la Demarcación Hidrográfica del Cantábrico Oriental en el plan hidrológico correspondiente al ciclo de planificación 2022-2027 recoge entre sus determinaciones un Plan de seguimiento ambiental que consistirá en el seguimiento anual de diferentes indicadores. Estos indicadores son idénticos a los establecidos en el anterior ciclo de planificación.

La siguiente tabla recoge la evaluación de los indicadores ambientales del citado ámbito correspondiente a los años 2017 a 2023.

Indicador Cuencas Internas País Vasco	Fuente de datos	Metodología de cálculo	Valor 2017	Valor 2018	Valor 2019	Valor 2020	Valor 2021	Valor 2022	Valor 2023
Ejecución del gasto previsto en las infraestructuras de saneamiento y depuración	Programa de medidas	Suma del gasto total realizado en infraestructuras de saneamiento y depuración	21,11 M €	16,46 M €	16,06 M €	21,75 M €	7,61 M €	20,15 M €	20,64 M €

Indicador Cuencas Internas País Vasco	Fuente de datos	Metodología de cálculo	Valor 2017	Valor 2018	Valor 2019	Valor 2020	Valor 2021	Valor 2022	Valor 2023
Población con saneamiento conforme a la Directiva 91/271/CEE	Reporte de la Directiva 91/71/CEE	Habitantes equivalentes de las aglomeraciones urbanas que cumplen la Directiva 91/271/CEE (Nº y %)	1.641.555 h.e. 68,5%	1.641.555 h.e. 68,5%	1.810.365 h.e. 73,3%	1.810.365 h.e. 73,3%	1.809.865 h.e. 73,3%	1.809.865 h.e. 73,3%	1.790.502 h.e. 74,0%
91/2/1/OLL		Aglomeraciones urbanas que incumplen la Directiva 91/271/CEE	Incumplen: Donostia Gernika Irun	Incumplen: Donostia Gernika Irun	Incumplen: Donostia Gernika	Incumplen: Donostia Gernika	Incumplen: Donostia Gernika	Incumplen: Donostia Gernika	Incumple: Donostia
Nº de masas de agua superficiales en buen estado	Redes de seguimiento del estado de las masas de agua	Identificación de las masas de agua superficiales que, en base a las redes de seguimiento, alcanzan el buen estado en el año correspondiente	42	43	40	40	36	40	37
Nº de masas de agua con estaciones de aforo que cumplen el régimen de caudales ecológicos	Informe de seguimiento del grado de cumplimiento de los regímenes de caudales ecológicos,	Identificación de masas de agua en las que existen estaciones de aforo que cumplen el régimen de caudales ecológicos en el año hidrológico correspondiente	8	18 ¹¹	14 ¹²	16 ¹²	18 ¹²	21 ¹³	21
Ejecución del gasto previsto para proyectos de adecuación para mejora de la conectividad	Programa de medidas	Suma del gasto total realizado en proyectos de mejora de la conectividad	0,61 M € ¹⁴	0,04 M € ¹⁴	0,22 M € ¹⁴	0,10 M € ¹⁴	0,25 M € ¹⁴	0,10 M € ¹⁴	0,13 M € ¹⁴
Masas de agua colonizadas por el mejillón cebra (<i>Dreissena</i> polymorpha)	Red de seguimiento de la población larvaria del mejillón cebra en la CAPV	Identificación de las masas de agua que, en base a la red de seguimiento, están afectadas por el mejillón cebra	0	1	1	2	3	3	3
Nº de actuaciones de control y erradicación de especies invasoras		Identificación de las actuaciones realizadas para el control y la erradicación de especies invasoras	82 ¹⁴	91 ¹⁴	248 ¹⁴	113 ¹⁴	107 ¹⁴	190 ¹⁴	198 ¹⁴

Pág.66 Memoria

¹¹ En 2018 se dispuso de datos de 3 nuevas estaciones de aforo (en total se analizaron 20 estaciones).

¹² En 2019, 2020 y 2021 se han considerado 19 estaciones (las mismas que en el año 2018 excepto Aulestia por no disponer de los datos aforados).

¹³ En 2022 se ha incluido en el análisis cuatro nuevas estaciones de aforo en las cuencas del Barbadun, Ibaizabal y Butroe (total 23 estaciones).

¹⁴ Datos referentes a actuaciones del Gobierno Vasco.

Indicador Cuencas Internas País Vasco	Fuente de datos	Metodología de cálculo	Valor 2017	Valor 2018	Valor 2019	Valor 2020	Valor 2021	Valor 2022	Valor 2023
Ejecución del gasto previsto en medidas estructurales de defensa contra avenidas en núcleos urbanos consolidados	Programa de medidas	Suma del gasto total realizado en medidas estructurales de defensa contra inundaciones en núcleos urbanos consolidados	4,52 M €	3,12 M €	9,78 M €	9,97 M €	4,85 M €	2,18 M €	2,1 M€
Nº de espacios de la <u>Red</u> <u>Natura 2000</u> incluidos en el Registro de Zonas Protegidas	Registro de Zonas Protegidas	Identificación de espacios de la Red Natura 2000 localizadas en el ámbito de CIPV	21	21	21	22	22	22	22
Nº de <u>Reservas</u> <u>Naturales</u> <u>Fluviales</u> incluidas en el Registro de Zonas Protegidas	Registro de Zonas Protegidas	Identificación de Reservas Hidrológicas localizadas en el ámbito de CIPV	3	3	3	3	3	4 ¹⁵	4 ¹⁵
Nº de Zonas de Protección Especial incluidas en el Registro de Zonas Protegidas	Registro de Zonas Protegidas	Identificación de Zonas de Protección Especial localizadas en el ámbito de CIPV	46	46	46	46	46	46 (A estas zonas hay que añadir 510 elementos de patrimonio cultural ligados al agua)	46 (A estas zonas hay que añadir 510 elementos de patrimonio cultural ligados al agua)
Nº de Zonas <u>Húmedas</u> incluidas en el Registro de Zonas Protegidas	Registro de Zonas Protegidas	Identificación de Zonas Húmedas localizadas en el ámbito de CIPV	43	43	43	43	43	43	43
Superficies sobre las que se han aplicado medidas de restauración y rehabilitación, explicitando las superficies pertenecientes a los espacios incluidos en la Red Natura 2000	Actuaciones de restauración y rehabilitación	Suma de superficies en las que se han aplicado actuaciones de restauración y rehabilitación, diferenciando a su vez aquellas superficies incluidas en espacios de la Red Natura 2000	14 ha ¹⁴	32 ha ¹⁴	127 ha (47 ha en Red Natura 2000) ¹⁴	219 ha (27 ha en Red Natura 2000) ¹⁴	38 ha (1 ha en Red Natura 2000) ¹⁴	192 ha (58 ha en Red Natura 2000) ¹⁴	105,67 ha (37,67 ha en Red Natura 2000) ¹⁴

Tabla 13 Evaluación de los indicadores ambientales. DH del Cantábrico Oriental-Ámbito de las Cuencas Internas del País Vasco.

Así mismo, la Evaluación Ambiental Estratégica realizada para el **ámbito de competencias del Estado de la Demarcación Hidrográfica del Cantábrico Oriental** incorpora otros indicadores específicos que se muestran a continuación:

Memoria

¹⁵ Incluye reservas naturales subterráneas.

Indicador	Valor en PH 3 ^{er} ciclo	Año 2019	Año 2020	Año 2021	Año 2022	Año 2023
Emisiones totales de GEI (Gg CO2-equivalente)	13.814	13.814	12.973	11.167	11.565	
Emisiones GEI en la agricultura (Gg CO2-equivalente)	22,06	22,06	22,65	15,53	1.376,20	
Situaciones de emergencia por sequía en los últimos cinco años (nº)	0	0	0	0	0	
Zonas húmedas incluidas en el RZP (nº)	64	64	64	64	64	
Puntos de control del régimen de caudales ecológicos (nº)	28	7 ¹⁶	7	7	27	
Superficie anegada total por embalses (ha)	627	627	627	627	627	
Superficie de suelo con riesgo muy alto de desertificación (ha)						
Superficie de suelo urbano (ha)	35.014	35.014 ¹⁷	35.014	35.014	35.014	
Masas de agua afectadas por presiones significativas (nº)	44	45 ¹⁸	45	46 ¹⁹	44 ²⁰	
Porcentaje de masas de agua afectadas por presiones significativas	31	28	28	29	31	
Masas de agua subterránea afectadas por contaminación difusa (nº)	1	1	1	1	1	
Masas de agua en las que se prevé el deterioro adicional (nº)	1				1	
Porcentaje de masas de agua en las que se prevé el deterioro adicional	0,71%				0,71%	
Retorno en usos agrarios (hm³/año)		4,4	4,4	4,4		
Capacidad total de embalse (hm³)	98,5	98,5	98,5	98,5	77,1	
Porcentaje de habitantes equivalentes que recibe un tratamiento conforme a la Directiva 91/271/CEE		86	93	94		

Tabla 14 Evaluación de los indicadores ambientales. DH del Cantábrico Oriental-Ámbito de competencias del Estado.

Pág.68 Memoria

-

¹⁶ Número de estaciones de aforo para el seguimiento de caudales ecológicos localizadas en el ámbito de la CHC.

¹⁷ Considerando la codificación SIOSE y no computando como urbanos los correspondientes a usos de agricultura, bosque, áreas en estado natural y uso desconocido.

¹⁸ Atendiendo al Inventario de presiones significativas de los Documentos Iniciales de la revisión de tercer ciclo.

¹⁹ Atendiendo al Inventario de Presiones significativas del Documento consolidado de la revisión de tercer ciclo.

²⁰ Atendiendo al Inventario de Presiones significativas del Documento consolidado de la revisión del tercer ciclo.