

PROPUESTA DE PROYECTO DE PLAN HIDROLÓGICO DE LA DEMARCACIÓN HIDROGRÁFICA DEL CANTÁBRICO OCCIDENTAL

Revisión para el tercer ciclo 2022-2027

ANEJO XV

Riesgos asociados al cambio climático y adaptación

Versión consolidada tras consulta pública
Abril 2022

ÍNDICE

1. INTRODUCCIÓN	
2. BASE NORMATIVA	
2.1. Reglamento de planificación hidrológica	
2.2. Instrucción de planificación hidrológica	
2.3. Plan Nacional de Adaptación al Cambio Climático	
2.4. Ley de Cambio Climático y Transición Energética	
3. AFECCIÓN A LOS RECURSOS HÍDRICOS, SEQUÍAS E INUNDACIONES	
3.1. Afección a los recursos hídricos	
3.2. Impactos en el régimen de sequías	14
3.3. Impactos en las inundaciones	
4. PLAN DE ADAPTACIÓN AL CAMBIO CLIMÁTICO	19
5. AVANCES EN LOS MODELOS DE RIESGO PARA LOS ECOSISTEMAS	23
5.1. Pérdida de hábitat para especies de aguas frías	23
5.2. Riesgo de reducción del oxígeno disuelto en el agua	29
5.3. Riesgo de afección a macroinvertebrados	
6. AFECCIÓN A LOS USOS	
7. CONCLUSIONES	
8. REFERENCIAS	

ÍNDICE DE TABLAS

Tabla 1. Afección del cambio climático con respecto a una situación no afectada sobre las variables	hidrológicas
en el ámbito de la DHC Occidental	9
Tabla 2. Porcentajes de cambio de la escorrentía para cada UTS y trimestre	13
Tabla 3. Impactos sobre los ecosistemas y sobre los usos a tener en cuenta en el PNACC	21
Tabla 4. Combinación de los mapas de impacto y vulnerabilidad para la definición del riesgo	27
Tabla 5. Grado de Impacto debido a la afección en los macroinvertebrados	34

ÍNDICE DE FIGURAS

Figura 1. Evolución de las emisiones de CO₂ según las RCP
Figura 2. Evolución de la variación porcentual de la precipitación en la DHC Occidental como promedio de las proyecciones climáticas
• •
Figura 3. Evolución de la variación porcentual de la ETP en la DHC Occidental como promedio de las proyecciones climáticas
Figura 4. Evolución de la variación porcentual de la ESC en la DHC Occidental como promedio de las
proyecciones climáticas1
Figura 05.1. Figura 4. Concepto y definición de sequía (CEH, 2017)1
Figura 5. Variación en el periodo de retorno de las sequías de dos años según las proyecciones del escenario RC 4.51
Figura 6. Variación en el periodo de retorno de las sequías de cinco años según las proyecciones del escenari RCP 4.5
Figura 7. Variación en el periodo de retorno de las sequías de dos años según las proyecciones del escenario RC 8.5
Figura 8. Variación en el periodo de retorno de las sequías de cinco años según las proyecciones del escenari RCP 8.5
Figura 11. Marco conceptual para la evaluación de riesgos asociados al cambio climático (GTII, 2014)1
Figura 12. Metodología propuesta para la definición del riesgo asociado al cambio climático2
Figura 13. Definición de la zona de apremio y de la barrera termal de la Trucha Común y límites máximos d exposición en días en función de la temperatura media diaria (Wehrly & Wang, 2007)
Figura 14. Mapa de Exposición potencial, elaborado en base al límite termal de 21,8 ºC (arriba) y Adaptación d
la Presencia de la Trucha Común a las masas de agua superficiales (Atlas y Libro Rojo de los Peces
MMA, 2001) (abajo), en el ámbito de la demarcación2
Figura 15. Mapa del impacto potencial a corto plazo (PI1) según ambas sendas de emisiones (RCP4.5 y RCP8.5
Figura 16. Mapa de vulnerabilidad2
Figura 17. Mapa del riesgo a corto plazo (PI1) según ambas sendas de emisiones (RCP4.5 y RCP8.5)2
Figura 18. Distribución de la concentración de oxígeno disuelto en agua calculada, en función de la temperatur y la altitud, y observada (mg/l)
Figura 19. Estimación de la concentración de oxígeno disuelto en el agua (mgO ₂ /I) calculada en función de I temperatura y la altitud en el mes de agosto
Figura 20. Mapa del riesgo a corto plazo (PI1) debido a la reducción del oxígeno disuelto (RCP4.5 y RCP8.5) 3
Figura 21. Porcentaje de individuos por familia que experimentan un cambio como resultado de incrementos e la temperatura del agua (método del Óptimo Robusto) (CEH, 2012)
Figura 22. Mapa de peligro: Incremento esperado de la temperatura del agua a corto plazo (PI1) para el escenari de emisiones RCP4.5
Figura 23. Mapa del impacto potencial a corto plazo (PI1) sobre los macroinvertebrados según la senda d emisiones relativamente optimista (RCP4.5) y la más pesimista (RCP8.5)
Figura 24. Mapa del riesgo a corto plazo (PI1) para los macroinvertebrados según la senda de emisione relativamente optimista (RCP4.5) y más pesimista (RCP8.5)

SIGLAS Y ACRÓNIMOS

CEDEX Centro de Estudios y Experimentación de Obras Públicas
CEHCentro de Estudios Hidrográficos
DHCDemarcación Hidrográfica del Cantábrico
DMADirectiva 2000/60/CE Marco del Agua
ETIEsquema de Temas Importantes en materia de gestión de aguas
ETPEvapotranspiración potencial
ETREvapotranspiración real
GEIGases de Efecto Invernadero
IPHInstrucción de Planificación Hidrológica
LCCTE Ley de Cambio Climático y Transición Energética
MITERDMinisterio para la Transición Ecológica y el Reto Demográfico
PNACC Plan Nacional de Adaptación al Cambio Climático
QBRÍndice de Calidad del Bosque de Ribera
RPHReglamento de Planificación Hidrológica
TRLATexto Refundido de la Ley de Aguas

APÉNDICES

Apéndice XV.1. Mapas de impacto potencial para los escenarios de emisiones RCP4.5 y RCP8.5 en los tres periodos de impacto considerados

Apéndice XV.2. Mapas de riesgo para los escenarios de emisiones RCP4.5 y RCP8.5 en los tres periodos de impacto considerados

1. INTRODUCCIÓN

La Directiva Marco de Aguas (DMA), incorporada al ordenamiento jurídico español mediante el Texto Refundido de la Ley de Aguas (TRLA) y el Reglamento de Planificación Hidrológica (RPH), determina que los estados miembros de la Unión Europea deberán establecer las medidas necesarias para alcanzar el buen estado de las aguas superficiales y subterráneas a más tardar a los 15 años después de la entrada en vigor de la Directiva.

En el artículo 11 del RPH, en relación con el inventario de los recursos hídricos naturales, se establece que los planes hidrológicos evaluarán el posible efecto del cambio climático sobre los recursos hídricos naturales, estudiando su efecto en las asignaciones y reserva de recursos. También se incluye por tanto en el artículo 21, referente a los balances a realizar en el escenario a largo plazo para el establecimiento de asignaciones y reservas de recursos.

Así se ha venido haciendo en los planes anteriores, reflejando la posible reducción de los recursos hídricos en comparación con la situación actual y la afección que esta reducción supondría para las garantías de los principales usos en cada sistema, en base a la modelización de los sistemas de gestión.

En los últimos años la conciencia de este fenómeno y el conocimiento sobre sus posibles impactos ha avanzado sustancialmente, y además existe un marco político y legal más desarrollado, por lo que el enfoque en el presente ciclo de planificación necesariamente tiene que ser diferente.

Como ya se reflejó en el ETI, el cambio climático se considera hoy en día uno de los temas importantes si hablamos de afección en la gestión de los recursos hídricos y en el alcance de los objetivos ambientales, con el problema añadido de su transversalidad, suponiendo, casi con carácter generalizado un empeoramiento de todas las demás problemáticas existentes.

La imprescindible lucha frente al cambio climático establece un condicionante general que ha de marcar la gestión asociada a cualquier política sectorial y, en particular, la gestión de los recursos hídricos, con tanta repercusión en dichas políticas sectoriales. El cambio climático no es un problema particular de esta demarcación sino un reto global. Las políticas de la transición ecológica alineadas con el Pacto Verde Europeo lo afrontan decididamente.

Los efectos del cambio climático sobre el agua, los ecosistemas acuáticos y las actividades económicas son evidentes y progresivos. Estos efectos pueden catalogarse en los siguientes grupos:

- Sobre las variables hidrometeorológicas que determinan el balance hídrico y con ello la escorrentía, la recarga, la acumulación de hielo y nieve, los fenómenos extremos y demás efectos dependientes. En particular se espera una reducción general de la escorrentía y un incremento de los episodios extremos (sequías e inundaciones). La variación hidrológica tendrá una lógica repercusión en la calidad de las aguas.
- Sobre los ecosistemas, introduciendo una deriva en las condiciones de referencia a partir de las
 que se evalúa el estado o potencial de las distintas categorías y tipos de masas de agua. Todo
 ello en especial relación con el incremento de temperatura, que directamente condiciona el
 ascenso del nivel mar y con ello el cambio de nivel de base de los acuíferos costeros y otros
 diversos efectos geomorfológicos en la costa. Así mismo, el incremento de temperatura afecta

- a la corología de las distintas especies animales y vegetales, introduciendo derivas sobre los patrones actuales.
- Sobre el sistema económico, alterando la seguridad hídrica en general, tanto desde la perspectiva de las garantías de suministro (modificación de las necesidades de agua de los cultivos, de las condiciones de generación energética y otros) como desde la perspectiva de las condiciones exigibles a los vertidos y retornos que, coherentemente, deberán ser más exigentes.

Así, según las proyecciones climáticas (CEDEX, 2017) en los próximos años la planificación y gestión hídrica deberá hacer frente a una importante reducción de los recursos y a un incremento de fenómenos extremos, con importantes impactos en los ecosistemas dependientes y en los sistemas económicos, requiriendo para ellos de importantes cambios en las distintas políticas sectoriales que reduzcan la vulnerabilidad aumentando la resiliencia.

En el presente anejo se pretende exponer los avances en el análisis de riesgos vinculados al cambio climático en base a los estudios disponibles y a los trabajos para la elaboración del futuro Plan de adaptación al cambio climático, ya en desarrollo.

El anejo se divide en los siguientes capítulos:

- Introducción
- Base normativa
- Afección a los recursos hídricos
- Plan de adaptación al cambio climático
- Afección a los usos

El capítulo de base normativa describe, no solo los artículos relevantes en relación con el cambio climático, sino también el marco político actual europeo y nacional. En el capítulo de afección a los recursos se presentan los resultados derivados de las últimas proyecciones climáticas de acuerdo con el 5º informe del IPPC y las conclusiones del estudio del CEDEX (CEH, 2017) sobre el efecto de dichas proyecciones en los recursos hídricos a mayor escala.

Los resultados de estos trabajos han servido de base para la modelización de los escenarios futuros de gestión (2039) en situación de cambio climático recogidos en el anejo VI del presente plan.

2. BASE NORMATIVA

2.1. Reglamento de planificación hidrológica

El Reglamento de Planificación Hidrológica (RPH), aprobado mediante el Real Decreto 907/2007, del 6 de julio, recoge el articulado y detalla las disposiciones del TRLA relevantes para la planificación hidrológica.

En su articulado hay dos referencias al cambio climático relacionadas entre sí, en el artículo 11, relativo al inventario de recursos hídricos naturales, y en su artículo 21, en relación con los balances, asignaciones y reservas de recursos.

En su artículo 11 establece:

- 1. Por inventario de recursos hídricos naturales se entenderá la estimación cuantitativa, la descripción cualitativa y la distribución temporal de dichos recursos en la demarcación hidrográfica. En el inventario se incluirán las aguas que contribuyan a las aportaciones de los ríos y las que alimenten almacenamientos naturales de agua, superficiales o subterráneos.
- 2. A efectos de la realización del inventario la demarcación hidrográfica se podrá dividir en zonas y subzonas. La división se hará en cada caso atendiendo a criterios hidrográficos, administrativos, socioeconómicos, medioambientales u otros que en cada supuesto se estime conveniente tomar en consideración.
 - 3. El inventario contendrá, en la medida que sea posible:
- a) Datos estadísticos que muestren la evolución del régimen natural de los flujos y almacenamientos a lo largo del año hidrológico.
- b) Interrelaciones de las variables consideradas, especialmente entre las aguas superficiales y subterráneas, y entre las precipitaciones y las aportaciones de los ríos o recarga de acuíferos.
- c) La zonificación y la esquematización de los recursos hídricos naturales en la demarcación hidrográfica.
 - d) Características básicas de calidad de las aguas en condiciones naturales.
- 4. El plan hidrológico evaluará el posible efecto del cambio climático sobre los recursos hídricos naturales de la demarcación. Para ello estimará los recursos que corresponderían a los escenarios climáticos previstos por el Ministerio de Medio Ambiente, que se tendrán en cuenta en el horizonte temporal indicado en el artículo 21.4.

En el artículo 21, apartado 4, por su parte establece:

4. Con objeto de evaluar las tendencias a largo plazo, para el horizonte temporal del año 2027 el plan hidrológico estimará el balance o balances entre los recursos previsiblemente disponibles y las demandas previsibles correspondientes a los diferentes usos. Para la realización de este balance se tendrá en cuenta el posible efecto del cambio climático sobre los recursos hídricos naturales de la

demarcación de acuerdo con lo establecido en el artículo 11. El citado horizonte temporal se incrementará en seis años en las sucesivas actualizaciones de los planes.

Así, los efectos del cambio climático deberán estudiarse en el escenario 2039, según los 2 incrementos de 6 años correspondientes a esta segunda actualización del plan.

2.2. Instrucción de planificación hidrológica

La Instrucción de Planificación Hidrológica (IPH) recoge y desarrolla los contenidos del RPH y del TRLA.

La IPH por su parte incluye un cierto desarrollo a los artículos del RPH en relación con el cambio climático.

Por una parte, los apartados 2.4.6 y 3.5.2 son un desarrollo de los 2 artículos anteriores, con prácticamente el mismo contenido que el reglamento salvo la inclusión de una tabla con porcentajes de reducción de recursos a emplear en ausencia de modelos más precisos.

Además, hay una referencia al cambio climático en su apartado 3.4.7, con relación al seguimiento de los caudales ecológicos que se reproduce a continuación:

Se realizará un seguimiento del régimen de caudales ecológicos y de su relación con los ecosistemas, con objeto de conocer el grado de cumplimiento de los objetivos previstos e introducir eventuales modificaciones del régimen definido.

El seguimiento del régimen de caudales incorporará los siguientes elementos al proceso:

- a) Mejora del conocimiento sobre el funcionamiento de los ecosistemas acuáticos y de las especies objetivas identificadas.
- b) Mejora del conocimiento de la relación de los caudales ecológicos con el mantenimiento y estructura de los ecosistemas terrestres asociados.
- c) Previsiones del efecto del cambio climático sobre los ecosistemas acuáticos.

En la presente revisión del plan se abordará por primera vez el efecto del cambio climático sobre los ecosistemas acuáticos en el marco del plan de adaptación.

Por último, en el apartado 8, relativo al programa de medidas, se establece:

Deberá realizarse una comprobación de la adecuación del programa de medidas a los escenarios de cambio climático considerados. Tal comprobación deberá incluir la capacidad de adaptación de las medidas al cambio climático, así como la robustez y eficacia para alcanzar los objetivos de la planificación hidrológica.

2.3. Plan Nacional de Adaptación al Cambio Climático

Como resultado del compromiso nacional con la política europea, y en particular con el Pacto Verde Europeo, España aprobó, el 22 de septiembre de 2020, un nuevo Plan Nacional de Adaptación al Cambio Climático (PNACC) para el período 2021-2030.

El Pacto Verde Europeo es una estrategia de crecimiento con el objetivo último de transformar el modelo económico de la UE en uno más sostenible y neutro en emisiones, que deberá haberse logrado en 2050, protegiendo y mejorando a su vez el capital natural de la unión y la salud y el bienestar de los ciudadanos frente a los riesgos.

El Plan Nacional, por su parte, deberá ser el instrumento de planificación básico para promover la acción coordinada frente a los efectos del cambio climático en España a lo largo de la próxima década y ciclo de planificación. Sin perjuicio de las competencias que correspondan a las diversas Administraciones Públicas, el PNACC 2021-2030 define objetivos, criterios, ámbitos de trabajo y líneas de acción para fomentar la adaptación y la resiliencia frente al cambio del clima.

En concreto, el PNACC 2021-2030 define y describe 81 líneas de acción sectoriales organizadas en 18 ámbitos de trabajo. Entre ellos se diferencia uno dedicado al agua y a los recursos hídricos. En esta materia se distinguen seis (6) líneas de acción, que de manera muy sintética se describen a continuación y deberán tenerse en cuenta, en la medida de lo posible, en el presente ciclo de planificación:

- 1. Ampliación y actualización del conocimiento sobre los impactos del cambio climático en la gestión del agua y los recursos hídricos. Responsables: OECC y DGA en colaboración con AEMET.
- 2. Integración de la adaptación al cambio climático en la planificación hidrológica. Responsables: Organismos de cuenca para ámbitos intercomunitarios y CCAA para los intracomunitarios, DGA con el apoyo de la OECC.
- 3. Gestión contingente de los riesgos por sequías integrada en la planificación hidrológica. Responsables: Organismos de cuenca para ámbitos intercomunitarios y CCAA para los intracomunitarios, DGA con el apoyo de la OECC.
- 4. Gestión coordinada y contingente de los riesgos por inundaciones. Responsables: Organismos de cuenca para ámbitos intercomunitarios y CCAA para los intracomunitarios, DGA, OECC, DG de Costa y Mar, AEMET, DG de Protección Civil y Emergencias, CCAA y EELL.
- Actuaciones de mejora del estado de las masas de agua y de los ecosistemas acuáticos, con incidencia en las aguas subterráneas. Responsables: Organismos de cuenca para ámbitos intercomunitarios y CCAA para los intracomunitarios, DGA con el apoyo de la OECC y DG Costa y Mar.
- 6. Seguimiento y mejora del conocimiento sobre los efectos del cambio climático en las masas de agua y sus usos. Responsables: Organismos de cuenca para ámbitos intercomunitarios y CCAA para los intracomunitarios, DGA con el apoyo de la OECC y DG Costa y Mar.

Una de las herramientas operativas desarrolladas en el marco del Plan Nacional de Adaptación al Cambio Climático es el Plan de Impulso al Medio Ambiente para la Adaptación al Cambio Climático, PIMA Adapta¹. Este plan, que comenzó en 2015 para apoyar la consecución de los objetivos del PNACC, utiliza recursos económicos procedentes de las subastas de derechos de emisión, realizadas en el marco del régimen de comercio de derechos de emisión, canalizándolos hacia proyectos de adaptación.

La iniciativa PIMA Adapta, que está coordinada por la OECC y se gestiona desde diversas entidades públicas, contempla actuaciones en los ámbitos: agua, costas, parques nacionales, biodiversidad y ecosistemas.

-

¹ https://www.miteco.gob.es/es/cambio-climatico/planes-y-estrategias/PIMA-Adapta.aspx

En el presente anejo se dará cuanta del avance en las líneas de acción comentadas. Cabe destacar que algunos de los documentos y trabajos desarrollados, cuyas conclusiones se presentan a lo largo de este documento, se han hecho en el marco del PIMA Adapta.

2.4. Ley de Cambio Climático y Transición Energética

Recientemente se ha aprobado la Ley 7/2021, de 20 de mayo, de cambio climático y transición energética. Esta Ley hace expresa referencia a la planificación hidrológica, concretamente su artículo 19, que por su interés se reproduce a continuación:

Artículo 19. Consideración del cambio climático en la planificación y gestión del aqua.

- 1. La planificación y la gestión hidrológica, a efectos de su adaptación al cambio climático, tendrán como objetivos conseguir la seguridad hídrica para las personas, para la protección de la biodiversidad y para las actividades socioeconómicas, de acuerdo con la jerarquía de usos, reduciendo la exposición y vulnerabilidad al cambio climático e incrementando la resiliencia.
- 2. La planificación y la gestión hidrológica deberán adecuarse a las directrices y medidas que se desarrollen en la Estrategia del Agua para la Transición Ecológica, sin perjuicio de las competencias que correspondan a las Comunidades Autónomas. Dicha Estrategia es el instrumento programático de planificación de las Administraciones Públicas que será aprobado mediante Acuerdo del Consejo de Ministros en el plazo de un año desde la entrada en vigor de esta ley.
- 3. La planificación y la gestión, en coherencia con las demás políticas, deberán incluir los riesgos derivados del cambio climático a partir de la información disponible, considerando:
 - a) Los riesgos derivados de los impactos previsibles sobre los regímenes de caudales hidrológicos, los recursos disponibles de los acuíferos, relacionados a su vez con cambios en factores como las temperaturas, las precipitaciones, la acumulación de la nieve o riesgos derivados de los previsibles cambios de vegetación de la cuenca.
 - b) Los riesgos derivados de los cambios en la frecuencia e intensidad de fenómenos extremos asociados al cambio climático en relación con la ocurrencia de episodios de avenidas y sequías.
 - c) Los riesgos asociados al incremento de la temperatura del agua y a sus impactos sobre el régimen hidrológico y los requerimientos de agua por parte de las actividades económicas.
 - d) Los riesgos derivados de los impactos posibles del ascenso del nivel del mar sobre las masas de agua subterránea, las zonas húmedas y los sistemas costeros.
- 4. Con objeto de abordar los riesgos señalados en el apartado anterior, la planificación y la gestión hidrológicas deberán:
 - a) Anticiparse a los impactos previsibles del cambio climático, identificando y analizando el nivel de exposición y la vulnerabilidad de las actividades socio-económicas y los ecosistemas, y desarrollando medidas que disminuyan tal exposición y vulnerabilidad. El análisis previsto en este apartado tomará en especial consideración los fenómenos climáticos extremos, desde la probabilidad de que se produzcan, su intensidad e impacto.

- b) Identificar y gestionar los riesgos derivados del cambio climático en relación con su impacto sobre los cultivos y las necesidades agronómicas de agua del regadío, las necesidades de agua para refrigeración de centrales térmicas y nucleares y demás usos del agua.
- c) Considerar e incluir en la planificación los impactos derivados del cambio climático sobre las tipologías de las masas de aqua superficial y subterránea y sus condiciones de referencia.
- d) Determinar la adaptación necesaria de los usos del agua compatibles con los recursos disponibles, una vez considerados los impactos del cambio climático, y con el mantenimiento de las condiciones de buen estado de las masas de agua.
- e) Considerar los principios de la Estrategia del Agua para la Transición Ecológica para la adaptación y mejora de la resiliencia del recurso y de los usos frente al cambio climático en la identificación, evaluación y selección de actuaciones en los planes hidrológicos y en la gestión del aqua.
- f) Incluir aquellas actuaciones cuya finalidad expresa consista en mejorar la seguridad hídrica mediante la reducción de la exposición y la vulnerabilidad y la mejora de la resiliencia de las masas de agua, dentro de las que se incluyen las medidas basadas en la naturaleza.
- g) Incluir en la planificación los impactos derivados de la retención de sedimentos en los embalses y las soluciones para su movilización, con el doble objetivo de mantener la capacidad de regulación de los propios embalses y de restaurar el transporte de sedimentos a los sistemas costeros para frenar la regresión de las playas y la subsidencia de los deltas.
- h) Elaborar el plan de financiación de las actuaciones asegurando la financiación para abordar los riesgos del apartado primero.
- i) Realizar el seguimiento de los impactos asociados al cambio del clima para ajustar las actuaciones en función del avance de dichos impactos y las mejoras en el conocimiento.
- 5. En el marco de los Planes de Gestión del Riesgo de Inundación se considerará la necesidad de medidas de control de avenidas mediante actuaciones de corrección hidrológico forestal y prevención de la erosión.

En el presente anejo se abordará, en la medida de lo posible, los avances en estas líneas de trabajo en el ámbito de la demarcación. En futuras actualizaciones y en el plan de adaptación en desarrollo se tendrán en cuenta las conclusiones y recomendaciones de la Estrategia del Agua para la Transición Ecológica, una vez se desarrolle. Cabe destacar que en su contenido jugará un papel muy importante la restauración ambiental y la mejora de caudales ecológicos como herramienta fundamental para la lucha contra el cambio climático.

3. AFECCIÓN A LOS RECURSOS HÍDRICOS, SEQUÍAS E INUNDACIONES

Los efectos del cambio climático sobre las variables hidrometeorológicas afectan, no solo a la cuantía de dichas variables, sino también a su distribución espacial y temporal. Esto puede suponer variaciones en el balance hídrico, la escorrentía, la recarga, la acumulación de nieve y la incidencia de los fenómenos extremos. La variación de estas variables hidrológicas podrá tener una lógica repercusión en la calidad de las aguas, que se estudiará en apartados consecuentes.

En el año 2017, por encargo de la OECC, el Centro de Estudios Hidrográficos del CEDEX presentó el informe más reciente hasta la fecha en relación al impacto del cambio climático sobre las variables hidrológicas para el conjunto de España: "Evaluación del Impacto del Cambio Climático en los Recursos Hídricos y Sequías en España (2015-2017)" (CEH,2017).

A continuación, se presentan los resultados de dichos estudios con especial atención a las variables en el ámbito de la DHC Occidental.

3.1. Afección a los recursos hídricos

El estudio referenciado del CEDEX, evalúa el impacto en base a 12 proyecciones climáticas regionalizadas, combinando 6 modelos climáticos globales, regionalizados a la escala nacional, y dos escenarios de emisiones. Estos escenarios de emisiones, conocidos como RCP (sendas representativas de concentración, según sus siglas en inglés), se han obtenido del 5º informe de Evaluación del Panel Intergubernamental de Expertos en Cambio Climático (IPCC, por sus siglas en inglés).

Realmente, en dicho 5º informe del IPCC se presentan 4 RCP que se identifican según su forzamiento radiativo total para el año 2100 que varía desde 2.6 a 8.5 W/m². Así, se han establecido estas 4 sendas representativas de concentración: 2.6, 4.5, 6.0 y 8.5. Cada RCP tiene asociada una base de datos de emisiones de sustancias contaminantes, de emisiones y concentraciones de gases de efecto invernadero (GEI) y de usos de suelo hasta el año 2100. A grandes rasgos el escenario RCP2.6 está basado en una fuerte reducción de emisiones, los escenarios RCP4.5 y RCP6.0 son escenarios intermedios y el RCP8.5 es un escenario tendencial de altas emisiones.

Los RCP seleccionados por el CEH para la evaluación de impactos son el escenario tendencial (RCP8.5), según el cual se superaría una concentración de 1000 ppm de CO_2 en la atmósfera a finales de siglo, y un escenario intermedio (RCP4.5) relativamente optimista según el cual se aplican políticas de reducción de emisiones que sitúan el pico máximo de concentración en el año 2050 y estabilizándose en este caso la concentración en torno a 650 ppm de CO_2 a final de siglo (en la actualidad se sitúa en 410 ppm).

En la figura siguiente se puede ver la evolución de las emisiones de CO₂ a lo largo del siglo XXI para cada una de las RCP consideradas.

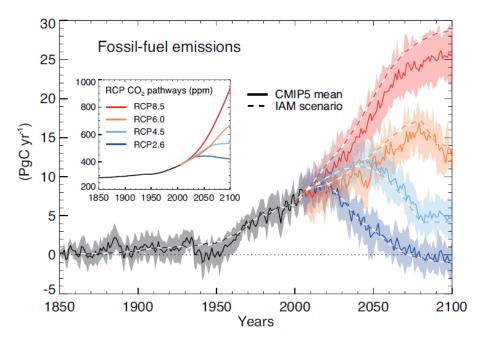


Figura 1. Evolución de las emisiones de CO₂ según las RCP.

Como apunte inicial a los resultados del informe cabe destacar que todas las proyecciones muestran un incremento de temperaturas y de fenómenos extremos en España a lo largo del siglo, la precipitación, sin embargo, muestra mayor variabilidad e incertidumbre.

A partir de estas 12 proyecciones se obtienen los mapas mensuales de precipitación y de temperaturas máximas y mínimas y con ellos se alimenta el modelo hidrológico empleado, que en este caso ha sido SIMPA, modelo desarrollado en el CEH (Estrela y Quintas 1996, Álvarez-Rodríguez et al. 2005) y ampliamente utilizado en la estimación de recursos hídricos a nivel nacional.

Así, el impacto sobre los recursos hídricos se ha evaluado en tres periodos futuros de 30 años, denominados periodos de impacto (PI), por comparación con el periodo de control (PC), que abarca de 1961 a 2000. Estos tres periodos de impacto son: PI1: 2010-2040, PI2: 2040-2070 y PI3: 2070-2100, reflejando el impacto en el corto, medio y largo plazo.

Todos los resultados del estudio se presentan como porcentajes de cambio promedio referido al periodo de control simulado, que se considera representativo de un periodo no impactado. Todos los resultados del estudio del CEDEX se han puesto a disposición del público y se pueden consultar mediante la aplicación CAMREC (de libre difusión y gratuita) desarrollada sobre QGIS.

A continuación, se presentan los resultados, para los tres periodos de impacto, de cada una de las variables hidrológicas que analiza el estudio, en el ámbito del Cantábrico Oriental.

Tabla 1. Afección del cambio climático con respecto a una situación no afectada sobre las variables hidrológicas en el ámbito de la DHC Occidental

		Med RCP4.5	Med RCP8.5
	PI1 (2010-2040)	-1%	-4%
Precipitación	PI2 (2040-2070)	-6%	-7%
	PI3 (2070-2100)	-6%	-14%
Evapotranspiración	PI1 (2010-2040)	2%	3%
potencial	PI2 (2040-2070)	5%	7%

		Med RCP4.5	Med RCP8.5
	PI3 (2070-2100)	6%	11%
	PI1 (2010-2040)	0%	0%
Evapotranspiración real	PI2 (2040-2070)	0%	1%
	PI3 (2070-2100)	1%	1%
	PI1 (2010-2040)	-1%	-2%
Humedad en el suelo	PI2 (2040-2070)	-4%	-5%
	PI3 (2070-2100)	-4%	-8%
	PI1 (2010-2040)	-3%	-5%
Recarga	PI2 (2040-2070)	-8%	-10%
	PI3 (2070-2100)	-8%	-19%
	PI1 (2010-2040)	-2%	-6%
Escorrentía	PI2 (2040-2070)	-10%	-12%
	PI3 (2070-2100)	-10%	-23%

A grandes rasgos se observa una reducción de la precipitación media anual. Esta reducción es bastante más moderada en el escenario RCP4.5, donde llama la atención que el decrecimiento es menor en el PI3 que en el PI2. Sin embargo, en la proyección RCP8.5 se observa una tendencia descendente en la precipitación, que incluso llega a reducirse un 14% en el periodo PI3.

La banda gris del gráfico siguiente indica el rango de resultados de las proyecciones, mostrándose una gran variabilidad entre ellas. Dado que la precipitación es la variable que más influye en el ciclo hidrológico conviene tener en cuenta las incertidumbres en su determinación.

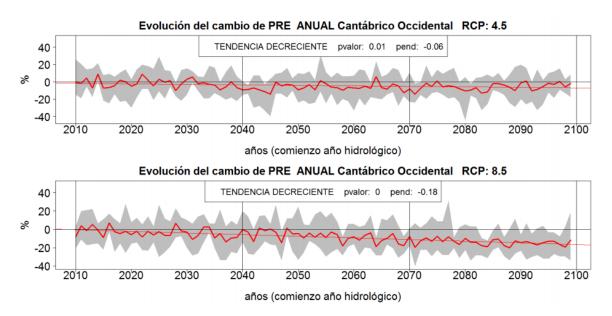


Figura 2. Evolución de la variación porcentual de la precipitación en la DHC Occidental como promedio de las 6 proyecciones climáticas

En cuanto a la apreciación de cambios en el ciclo anual, estos están enmascarados por la falta de ajuste de las proyecciones al ciclo observado en el periodo de control. Además, no hay unos claros patrones de cambio por la variabilidad de unas proyecciones climáticas a otras. Destaca, no obstante, una concentración de las precipitaciones en febrero en todos los PI y RCP y una reducción al final del verano.

Por su parte, en el caso de la evapotranspiración potencial (ETP), su variación responde a la tendencia de temperaturas. La ETP sube en todos los periodos según todas las proyecciones del RCP4.5, aunque cabe destacar que se trata de incrementos leves ya que, en el caso de esta variable, la cornisa cantábrica se ve afectada en menor medida por el cambio climático, al contrario del interior peninsular.

Las proyecciones del RCP8.5 presentan mayores subidas de ETP que las respectivas del RCP4.5. En este caso en el periodo PI3 se observa un incremento mayor del 11%.

En este caso la incertidumbre es menor, dado que no va más allá de diez puntos porcentuales arriba o abajo (banda gris del gráfico siguiente).

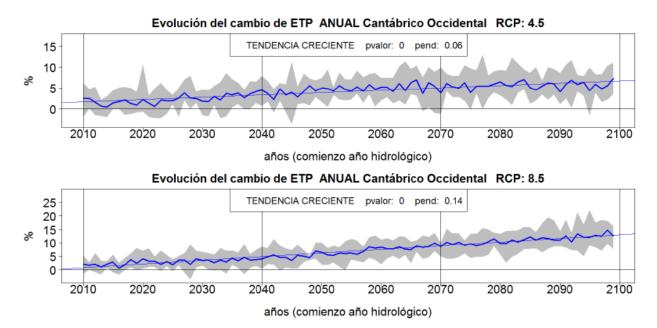


Figura 3. Evolución de la variación porcentual de la ETP en la DHC Occidental como promedio de las 6 proyecciones climáticas

En cuanto a la ETR, apenas presenta cambios en la proyección PI1 para ambos escenarios de emisiones RCP. En las proyecciones futuras, según avanza el siglo, se prevén variaciones poco significativas y con valores positivos, siendo más notables en el escenario RCP8.5. Esta tendencia en escenarios futuros es similar a la ETP pero más moderada, puesto que la ETR también se verá influida por la reducción de la precipitación y de la humedad del suelo. Respecto al cambio en el ciclo anual, se aprecia un patrón que consiste en una concentración de la ETR en los meses donde hay más disponibilidad de agua, en invierno, y una reducción en los meses de verano, hacia el final del año hidrológico.

La humedad en el suelo también presenta una tendencia decreciente, debido al descenso de la precipitación y al aumento de ETP, lo que causaría importantes impactos en los ecosistemas y la agricultura. La relación directa entre esta variable y la reducción de la precipitación es notable, puesto que, tal y como ocurre con la previsión de la precipitación, no se observa variación de la humedad para los periodos PI2 y PI3 en el escenario RCP4.5. No obstante, la reducción es más acusada en las proyecciones RCP8.5.

La variación en la recarga, por su parte, oscila entre un -3% en el PI1 del escenario RCP4.5 y un -19% en el PI3, RCP8.5. Con carácter general, los cambios en la recarga siguen pautas similares a las de la precipitación, aunque más acentuadas. No se observan tampoco unos claros patrones de cambio en el ciclo anual salvo por la tendencia a concentrarse en los meses invernales y a reducirse a finales del verano.

Finalmente, la variación de la escorrentía presenta valores de variación muy similares a la recarga, entre un -2% en el PI1 y RCP4.5 y un -23% en el PI3 y RCP8.5. Al igual que ocurría con la precipitación, no se

observan unos claros patrones de cambio en el ciclo anual, ya que los resultados varían mucho según la proyección climática.

Los cambios en la recarga y en la escorrentía son indicativos de la variación en la disponibilidad de recursos subterráneos y superficiales respectivamente, y servirán de base para la definición del escenario futuro de cambio climático a efectos de modelar la gestión de los sistemas recogida en el anejo VI.

Para ello, con el fin de obtener los valores de reducción más adecuados, aplicables a los modelos de gestión, se ha solicitado al CEDEX un mayor detalle geográfico y temporal para estas dos últimas variables. Por el momento se dispone de la variación de la escorrentía según se muestra a continuación.

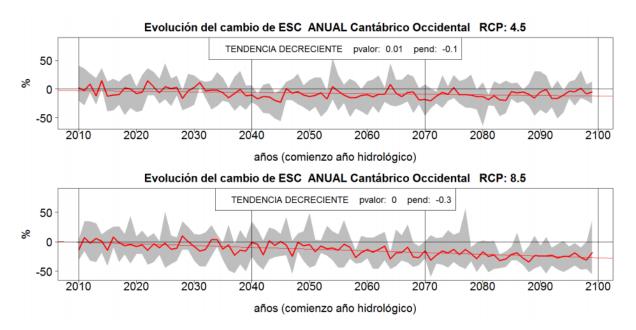


Figura 4. Evolución de la variación porcentual de la ESC en la DHC Occidental como promedio de las 6 proyecciones

Cabe recordar, según se ha apuntado ya en el apartado dedicado a la normativa que, de acuerdo con la IPH, para la evaluación de tendencias a largo plazo, en el horizonte 2039, se han de realizar balances entre recursos y demandas previsibles teniendo en cuenta el posible efecto del cambio climático.

De acuerdo con las recomendaciones del CEDEX (2020) una buena aproximación para el horizonte 2039 se obtendría promediando los valores de los dos primeros periodos de impacto (2010-2040 y 2040-2070), y a su vez, promediando los resultados para las seis proyecciones climáticas utilizadas en cada senda de emisiones.

Dado que el sesgo de los valores climáticos de partida es muy importante, y no se reproduce adecuadamente la variabilidad interanual y los periodos secos y húmedos en el periodo de control (PC), no es posible modificar estos porcentajes en base a una serie real diferente a dicho PC, esto es, para la serie actual empleada en los modelos de gestión (1940/41-2017/18, serie larga, y 1980/81-2017/18, serie corta). Por este motivo, con carácter general, los porcentajes de reducción obtenidos en el estudio se consideran válidos para comparar una serie afectada por el cambio climático con una que no lo esté. Así, el CEDEX propone emplear el promedio de los dos primeros PI para aproximar al horizonte 2039 y aplicar estos porcentajes sobre la serie 1940/41-2005/06, considerándose que a partir de dicho año la

serie ya está afectada por el cambio climático. Por otro lado, se han recalculado también los porcentajes de reducción media que habría que aplicar en cada demarcación a la serie corta para estimar los recursos al horizonte 2039.

En cuanto a la desagregación temporal y espacial, el CEH consideró de utilidad facilitar los porcentajes de cambio en las aportaciones hídricas de la red fluvial, de manera que se pudieran obtener directamente los porcentajes de variación en la aportación en los puntos de interés para los modelos hidrológicos empleados, y poder analizar así el impacto del cambio climático sobre los usos. Como ejemplo, se presentan a continuación los resultados obtenidos por trimestre para las unidades territoriales de sequía definidas en el Plan Especial de Sequía correspondiente a las cuencas de la DHC Occidental

RCP4.5 **RCP8.5** Código UTS **Nombre UTS** Oct-Dic **Ene-Mar** Abr-Jun Jul-Sep Oct-Dic Ene-Mar Abr-Jun Jul- Sep UTS 01 Ео -11% -1% -6% -13% -13% -2% -11% -16% -15% UTS 02 Porcía -5% -14% -4% -11% -12% -2% -12% **UTS 03** Navia -10% -1% -8% -16% -12% -1% -12% -19% **UTS 04** -12% -13% -5% -12% -16% Esva -1% -5% -13% **UTS 05** Nalón -11% -1% -5% -15% -12% -4% -12% -18% **UTS 06** Villaviciosa -15% -4% -7% -12% -15% -8% -14% -18% **UTS 07** Sella -5% -11% -16% -10% 0% -3% -14% -9% **UTS 08** Llanes -13% -1% -4% -12% -12% -7% -12% -15% UTS 09 -10% Deva -9% 0% -3% -10% -9% -4% -13% **UTS 10** Nansa -10% 1% -4% -11% -10% -5% -10% -13% **UTS 11** Gandarillas -15% -2% -5% -10% -14% -8% -12% -13% **UTS 12** Saja -12% 0% -4% -11% -11% -7% -11% -13% **UTS 13** Pas - Miera -13% -1% -5% -13% -12% -6% -12% -14% **UTS 14** Asón -11% -1% -5% -5% -11% -14% -12% -10% **UTS 15** -7% -12% Agüera -13% -2% -6% -10% -12% -13%

Tabla 2. Porcentajes de cambio de la escorrentía para cada UTS y trimestre

Como se puede ver en el cuadro anterior, en el caso de la parte intercomunitaria de la DHC Occidental existe importante diferencia entre considerar un escenario optimista (RCP4.5) y uno pesimista (RCP 8.5). Si bien en términos absolutos en ambos escenarios se produce una reducción global de la escorrentía, en el escenario RCP4.5 hay una reducción más acusada en el primer y cuarto trimestre del año hidrológico en todas las UTS, mientras que en el escenario RCP8.5 la reducción es generalizada en todos los trimestres y ámbitos geográficos.

Tal y como propone CEH, la obtención de los porcentajes de cambio de la aportación trimestral en cada celda de la red fluvial, podría ser un dato interesante para la modelización de la gestión en el escenario de cambio climático, ya que permite obtener para cada punto de aportación en la red fluvial, la reducción que se ha producido en cada trimestre.

Por otro lado, recientemente el CEDEX ha evaluado el posible efecto del cambio climático en la recarga subterránea de las masas de agua, proporcionando porcentajes de cambio anual de la recarga

subterránea para el horizonte 2039 según los escenarios de emisiones RCP 4.5 y RCP 8.5 y respecto al periodo 1961-2000. Para la DHC Occidental se concluye que la reducción de la recarga subterránea prevista para el año 2039 es de, aproximadamente, 7% en el escenario RCP 4.5, y del 9% en el escenario RCP 8.5.

Cabe mencionar que los resultados obtenidos en este estudio tienen una alta incertidumbre, debido a que a la incertidumbre inherente a los modelos climáticos hay que añadir la dificultad de simular los procesos del ciclo subterráneo por modelos hidrológicos sencillos

En conclusión, teniendo en cuenta los diversos estudios realizados para el ámbito de la DHC Occidental, para la modelización de la gestión en el escenario de cambio climático en la elaboración del presente Plan Hidrológico se ha considerado una reducción de las aportaciones respecto de la serie corta para el horizonte 2039 del 4,6% en un escenario medio, y del 11,2% en un escenario pesimista, respecto a las aportaciones del periodo 1980/81-2017/18.

3.2. Impactos en el régimen de sequías

El informe del CEDEX (CEH, 2017) aborda igualmente la variación de las sequías según las 12 proyecciones climáticas, entendida como el cambio en su periodo de retorno en cada uno de los periodos de impacto con respecto al periodo de control. A partir de los resultados de escorrentía obtenidos con el modelo SIMPA, la metodología desarrollada por el CHE es la siguiente: por acumulación de los valores mensuales de cada ámbito geográfico, se identifican las sequías como rachas de años seguidos cuyo valor de escorrentía es inferior al pro elegido (en este caso la mediana).

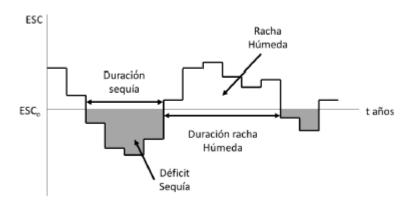


Figura 05.1. Figura 5. Concepto y definición de sequía (CEH, 2017).

A continuación, se ajusta una función de distribución de probabilidad en base a las características de interés de la sequía: duración y déficit. Se clasifican las sequías según su duración en categorías: sequías de 1 a 5 años. Y posteriormente se estudia la probabilidad para distintos déficits en cada una de estas categorías.

Los resultados obtenidos se representan gráficamente como la peligrosidad de cada categoría de sequía. En abscisas se indica el déficit acumulado medio y en ordenadas el periodo de retorno en años.

A continuación, se muestran los gráficos que representan los resultados de la evaluación del impacto del cambio climático en el régimen de sequías en la demarcación, obtenidos de dicho informe.

En cada gráfica se muestra el cambio en la frecuencia de sequías de 2 o 5 años de duración, según cada uno de los modelos climáticos empleados en este trabajo, tanto para el RCP 4.5 como para el RCP 8.5. El cambio se ilustra mediante curvas que expresan la relación entre el periodo de retorno de sequías y el mínimo déficit medio anual para cada uno de los tres periodos de impacto futuros frente al periodo de control.

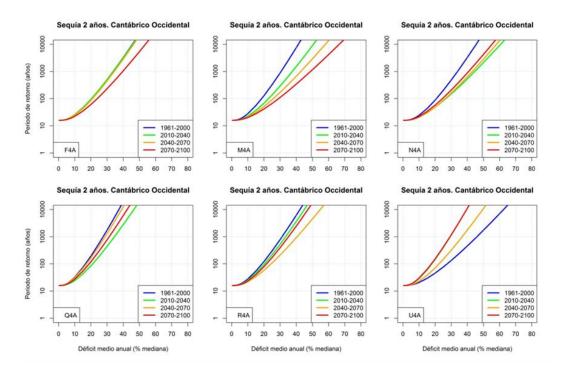


Figura 6. Variación en el periodo de retorno de las sequías de dos años según las proyecciones del escenario RCP 4.5

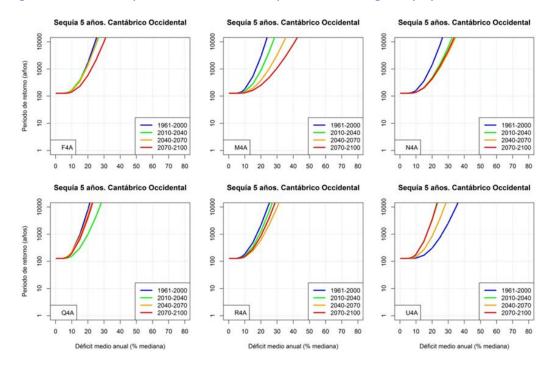


Figura 7. Variación en el periodo de retorno de las sequías de cinco años según las proyecciones del escenario RCP 4.5

En términos generales se observa un aumento en la frecuencia (o una disminución del periodo de retorno) en las sequías de 2 años de duración en la mayoría de las proyecciones futuras para el RCP4.5.

Esto se traduce a que, para un mismo periodo de retorno, las sequías serán más intensas ya que presentarán déficits mayores. No obstante, algunas modelizaciones no presentan aumentos en la frecuencia de sequías en escenarios futuros, e incluso muestran una disminución en la incidencia. Estos resultados son aún más frecuentes en las sequías de 5 años, donde solamente en dos de las proyecciones futuras se puede observar una clara disminución del periodo de retorno a medida que avanzan los años.

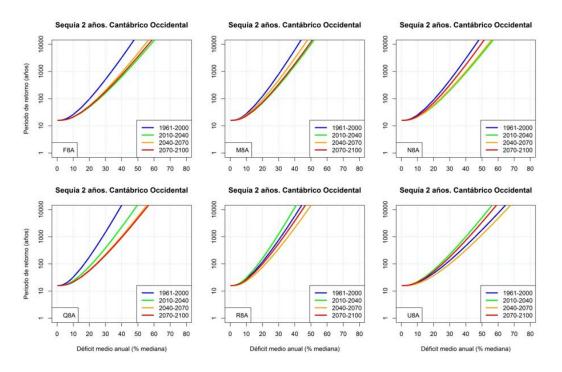


Figura 8. Variación en el periodo de retorno de las sequías de dos años según las proyecciones del escenario RCP 8.5

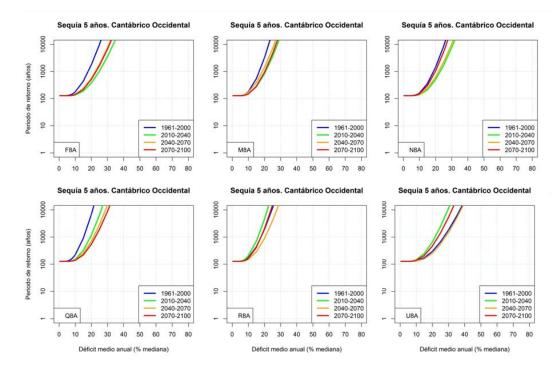


Figura 9. Variación en el periodo de retorno de las sequías de cinco años según las proyecciones del escenario RCP 8.5

En el escenario RCP8.5 se observan conclusiones similares y también la misma incertidumbre. En este caso no es tan marcada la diferencia entre ambas sendas de emisiones como lo era en la variación de los recursos hídricos.

Si bien a priori parece probable un aumento del riesgo de sufrir sequías más a menudo y más intensas, dado que no se observa un claro empeoramiento entre la senda de emisiones 8.5 con respecto a la senda 4.5 es difícil vincular este aumento del riesgo con la evolución de otros factores asociados al cambio climático (emisiones, aumento de temperatura, ...).

No se puede afirmar de forma concluyente un aumento en la incidencia de la sequía, pero sí parece razonable pensar que las sequías que se den en el futuro serán más intensas.

A esto se une la más que probable reducción de recursos convencionales en situación de normalidad, que podría suponer la puesta en marcha de medida hasta ahora reservadas a periodos de sequía (incremento de desalinización y reutilización, pozos de sequía, ...) y que por lo tanto reducirán su disponibilidad en periodos críticos.

En conclusión, a la vista de la incertidumbre en las predicciones y a la probabilidad de sufrir un empeoramiento en relación con el estrés hídrico en la agricultura y en lo que a recursos disponibles se refiere, las medidas que se recogen en los PES de la demarcación deberán enfocarse al aumento de la resiliencia de los sistemas, para poder hacer frente a la variabilidad de recursos y la incertidumbre creciente. Así, en la revisión del Plan Especial de Sequía de la demarcación se deberá tener en cuenta, el carácter impredecible de estas situaciones y cómo afrontarlas con unos recursos en disminución.

El programa de medidas del plan ha incluido la realización de los estudios técnicos que han de conducir a la actualización de los citados planes de sequía con el fin de desarrollar análisis de probabilidad y riesgo más robustos que los realizados hasta el momento, conforme a lo previsto en la Ley 7/2021, de 20 de mayo, de cambio climático y transición energética.

3.3. Impactos en las inundaciones

En la revisión de la Evaluación Preliminar del Riesgo de Inundación de la DHC Oriental realizada en el año 2018 según lo establecido por la Directiva de Inundaciones, se ha analizado la influencia del cambio climático en la frecuencia de los caudales, y se ha concluido que estos cambios en el régimen de precipitaciones y en la evapotranspiración darían lugar, para el horizonte 2100, a cambios apreciables en los caudales de avenida; para periodos de retorno bajos (10 años) los cambios en los caudales de avenida serían nulos o con una ligera tendencia a la disminución, mientras que para periodos de retorno más elevados (100 y 500 años) los modelos predicen un incremento de los caudales de avenida.

Por otro lado, también se han analizado los resultados en el informe "Impacto del cambio climático en las precipitaciones máximas en España" (CEDEX, 2021), elaborado por el Centro de Estudios Hidrográficos del CEDEX, cuyo objetivo es la evaluación del impacto del cambio climático sobre las precipitaciones máximas anuales.

Es preciso indicar que estos posibles incrementos en los caudales de avenida no se traducen en un aumento proporcional de la inundabilidad. La probabilidad de desbordamiento de los cauces y el comportamiento de las avenidas en las llanuras de inundación dependen de múltiples factores que a su

vez son susceptibles de experimentar cambios en un contexto de cambio climático. En este sentido, conviene destacar la carga sólida transportada por los cauces, que juega un papel muy relevante en el comportamiento de las avenidas y que puede experimentar cambios importantes en un contexto de cambio climático debido a cambios en los usos del suelo, cambios en las prácticas agrarias, evolución de las comunidades vegetales y, muy particularmente, como consecuencia de un incremento en la intensidad y frecuencia de los incendios forestales, que las proyecciones climáticas identifican como un escenario muy probable.

En este sentido, en la DHC Occidental, para evaluar las posibles repercusiones del cambio climático en las inundaciones de origen pluvial y fluvial, se ha llevado a cabo un análisis de la potencial influencia de dicho cambio climático sobre dos componentes, las cuales son determinantes en la variación y frecuencia de las leyes de caudales: la componente meteorológica y la componente usos del suelo.

Con respecto a la componente meteorológica, se han analizado los cambios en la precipitación máxima diaria acumulada en la red hidrográfica básica para los tres periodos de retorno que indica la Directiva (10, 100 y 500 años) según los dos principales escenarios de emisiones de gases de efecto invernadero, los RCP 4.5 y 8.5 y se le ha dado un peso del 80% dentro de la componente meteorológica frente al 20% que se le habría asignado de peso al fenómeno nival dentro de la componente meteorológica.

En el caso de la componente usos del suelo, se considera condicionada por cuatro factores: los propios cambios en los usos del suelo, la erosión, la incidencia de los incendios y la superficie impermeabilizada. El factor al que se ha asignado mayor relevancia en la generación de crecidas, dentro de la componente de usos de suelo, es la presencia de superficie impermeabilizada y se le ha dado un peso del 50%, ya que influye en la mayor generación de escorrentía y velocidad del agua y reduce la infiltración natural. También se considera de relevancia el factor de la erosión, a la que se le ha dado un 30%, pues incrementa el arrastre de sedimentos y la velocidad del flujo, lo que se traduce en un aumento de la peligrosidad de la inundación.

Además, aunque con menor relevancia, se han tenido en cuenta los cambios de usos de suelo en las subcuencas y el número de incendios forestales, a los que se les ha asignado un peso de un 10% a cada uno.

El programa de medidas del plan ha incluido la realización de estudios técnicos que permitan continuar profundizando en los posibles efectos del cambio climático sobre el régimen de inundaciones de la demarcación, así como sobre la gestión del riesgo asociado, con especial atención a la incertidumbre ligada y a las estrategias existentes en el marco de la adaptación al cambio climático.

4. PLAN DE ADAPTACIÓN AL CAMBIO CLIMÁTICO

Tal y como se ha presentado en el apartado 2.3, el PNACC 2021-2030 define 6 líneas de acción sectoriales en el ámbito de los recursos hídricos. Estas líneas de acción se centran en la mejora del conocimiento de los impactos del cambio climático sobre los propios recursos, los ecosistemas y los distintos usos; la gestión contingente de los riesgos por fenómenos extremos y la integración de la adaptación en la planificación, entendida como la reducción de riesgos y la adopción de medidas de mejora o de mitigación.

Además, la Ley 7/2021, de 20 de mayo, de cambio climático y transición energética, también recoge en el artículo 19 el mandato de incluir el efecto del cambio climático en la planificación, con el objetivo de conseguir la seguridad hídrica de las personas, la protección de la biodiversidad y de las actividades socio económicas, teniendo en cuenta la jerarquía de usos y reduciendo la exposición y la vulnerabilidad.

Con el objetivo de dar cumplimiento a este artículo y sobre todo de reducir así la vulnerabilidad frente al cambio climático, el IIAMA-UPV (Instituto de Ingeniería del Agua y Medio Ambiente de la Universitat Politècnica de València) está elaborando el proyecto "Medidas para la adaptación de la gestión del agua y la planificación hidrológica al cambio climático. Aplicación en la Demarcación Hidrográfica del Júcar". Este proyecto, que cuenta con financiación de la Fundación Biodiversidad del MITERD, desarrollará el contenido básico del Plan de Adaptación del Júcar y servirá de base para los futuros planes de adaptación al cambio climático en todas las demarcaciones.

El objeto del estudio, cuya fecha prevista de finalización será a mediados de 2021, es doble: por un lado, la identificación y caracterización espacial de los principales riesgos derivados del cambio climático y, por otro lado, definir las medidas de reducción de dichos riesgos.

Con el propósito de objetivar la evaluación del riesgo asociado al cambio climático, el enfoque del trabajo se centrará en el empleo de indicadores que cuantifiquen los peligros asociados al cambio climático, el nivel de exposición y la vulnerabilidad del sistema hídrico (Pérez Martín, M.A., 2020), de acuerdo con el siguiente esquema:

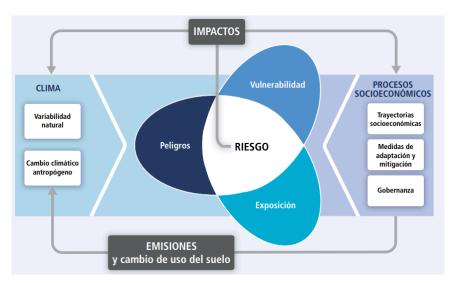


Figura 10. Marco conceptual para la evaluación de riesgos asociados al cambio climático (GTII, 2014)

En base a este esquema conceptual la metodología desarrollada en dicho estudio se basa en la elaboración de mapas, para cada una de las variables objeto de estudio, cuyo fin último es la obtención

del mapa de riesgos. Estos mapas se desarrollarán en consonancia con las definiciones consensuadas en el seno del grupo de trabajo para el cambio climático (IPPC, 2019), que se expresan a continuación:

- Mapas de peligrosidad, considerada como los sucesos o tendencias físicas relacionadas con el clima o los impactos físicos de éste que muestran la distribución espacial y temporal de una determinada variable en los diferentes escenarios de cambio climático planteados.
 - Aquí entran en juego las diferentes proyecciones climáticas ya expuestas (CHE, 2017). En concreto se ha trabajado con los escenarios de emisiones RCP4.5 y RCP8.5, o más concretamente con las medias de las variables meteorológicas de cada uno de estos escenarios de emisiones, previstas para el corto plazo (PI1: 2010 2040), el medio plazo (PI2: 2040 2070) y el largo plazo (PI3: 2070 2100), según los 3 periodos de impacto (PI) analizados.
- Mapas de exposición, considerada como la presencia de personas; medios de subsistencia; especies o ecosistemas; funciones, servicios y recursos ambientales; infraestructura; o activos económicos, sociales o culturales en lugares y entornos que podrían verse afectados negativamente.
 - La exposición de una variable puede entenderse como presencia potencial o real, como veremos más adelante para algunas de las variables ya analizadas.
 - El cruce de los mapas de peligro y exposición se obtienen los mapas de impacto potencial, que nos da una idea del posible impacto del cambio climático para la variable.
- El mapa de vulnerabilidad, definida como la propensión o predisposición a ser afectado negativamente o, dicho de otra manera, la capacidad del sistema de asimilar ese peligro sin sufrir daños.
 - En este contexto la vulnerabilidad comprende una variedad de conceptos y elementos que incluyen la sensibilidad o susceptibilidad al daño y la falta de capacidad de respuesta y adaptación, y deberá tener en cuenta no solo las características de la variable en sí sino también del medio en el que se encuentra.
- Finalmente, los <u>mapas de riesgo</u>, definido como las consecuencias eventuales en situaciones en que algo de valor está en peligro y el desenlace es incierto, reconociendo la diversidad de valores. También para referirse a las posibilidades, cuando el resultado es incierto, de que ocurran consecuencias adversas para la vida; los medios de subsistencia; la salud; los ecosistemas y las especies; los bienes económicos, sociales y culturales; los servicios (incluidos los servicios ambientales) y la infraestructura.

El análisis de riesgos que deberá incluirse en el futuro plan de adaptación, atendiendo al contenido del artículo 19 de la Ley 7/2021, de 20 de mayo, de cambio climático y transición energética, incluirá, en la medida de lo posible, las siguientes variables:

Tabla 3. Impactos sobre los ecosistemas y sobre los usos a tener en cuenta en el PNACC

Masas de agua	SW1 Alteración de hábitat	its: especies piscícolas (y otras) asociadas a determin	iados rangos térmicos → ECB		
superficial	SW2 Descenso O2 afección fauna acuática		→ ECB y Q/FQ		
	SW3 Afección a la biodive	ersidad acuática y ribereña por el cambio de régimen	n hidrológico → ECB e HMF		
	SW4 Conversión ecosister	mas que pasan de permanente a estacional, o deriva	ados de cambio s		
	en los patrones de te	emporalidad hidrológica	→ HMF		
	SW5 Afección en la distrib	bución, composición y abundancia de macroinvertet	orados → EC8		
	SW6 Afección en la distrib	bución, composición y abundancia de diatomeas y m	nacrófitos → ECB		
	SW7 Reducción de hábitar	ats aptos para determinadas formaciones/gremios de	e vegetación de ribera → HMF		
	5W8 Distribución y abund	dancia de especies exóticas invasoras	→ ECB		
	5W9 Incremento de la cor	ncentración de contaminantes (P,NO3)	→ Q/FQ		
ECB = Elementos de	SW10 Afección al pH y a ot	tros parámetros fisicoquímicos	→ Q/FQ		
calidad biológica	SW11 Eutrofización de lago	os y humedales	→ ECB		
Q/FQ = Condiciones químicas y	SW12 Cuña salina rios		→ Q/FQ y ECB		
fisicoquímicas	SW13 Afección a la vegetac	ción climatófila de la Demarcación			
HMF = Condiciones hidromorfológicas	SW14 Aumento de la frecu	uencia e intensidad de los incendios forestales			
	SW15 Cambio del estado de	le las masas de agua superficiales (DMA)			
Masas de agua	GW1 Incremento de la	a concentración de contaminantes (NO3)	→ QUI		
subterránea	GW2. Cuña salina agua	as subterráneas	→ QUI		
			→ CUA		
QUI = Químico CUA = Cuantitativo	GW4 Cambio del estado de las masas de agua subterráneas (DMA)				
Abastecimiento	U1 Aumento demanda	a agua			
urbano	U2 Pérdida garantia u	irbana			
	AU3 Descenso en la calidad del agua bruta				
	AU4 Aumento de vertidos por aliviaderos en episodios de lluvias (entrada EDAR)				
	US Colapso de colecto				
	U6 Desbordamiento d	de cauces			
Regadíos y usos	AG1 Aumento estrés	hídrico en cultivos de secano			
agrarios	AG2 Aumento demanda agua en cultivos de regadío				
	AG3 Pērdida garantīa	a regadio			
	AG4 Cambio hábitat cultivos				
	AGS Aumento malas hierbas				
	AG6 Eventos extremos				
Producción de	H1 Reducción caudal	l disponible natural			
			AC1 Cambios en temperatura, oxígeno disuelto y caudal (afección hábitat de las especies)		
energía hidroeléctrica Acuicultura	C1 Cambios en temper	ratura, oxigeno disuelto y caudal (afección hái	bitat de las especies)		

La dificultad para abordar los riesgos asociados al cambio climático para cada una de estas variables radica principalmente en la disponibilidad de valores de referencia o límites de tolerancia asociados al clima para cada una de estas variables, de manera que se pueda definir a partir de qué momento una variable estaría impactada.

Por el momento se ha analizado, a partir de la peligrosidad asociada al incremento de temperatura en el agua, los riesgos asociados a las siguientes variables:

- La pérdida de hábitat en las especies piscícolas de aguas frías (SW1),
- La reducción en el oxígeno disuelto en el agua (SW2),
- Y la afección a las especies de macroinvertebrados (SW5).

Los resultados de la evaluación de riesgos para estas variables se presentan en los siguientes apartados de este anejo.

La metodología desarrollada es la siguiente, según la cual se determinan los impactos en base a la combinación de las variables de peligrosidad y exposición, y los riesgos, mediante el cruce de dicho impacto con la vulnerabilidad. El riesgo se clasificará en muy alto, alto, medio, bajo o nulo de acuerdo con los rangos establecidos en cada caso:

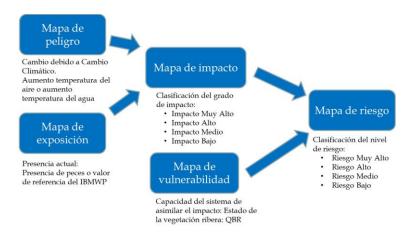


Figura 11. Metodología propuesta para la definición del riesgo asociado al cambio climático

Finalmente, a partir del análisis de estos mapas se definirán las medidas de adaptación necesarias para reducir el riesgo y se priorizarán las zonas donde su aplicación es más urgente.

Para ello, en base al análisis de riesgos a corto, medio y largo plazo realizado, se considera que las zonas más afectadas en el escenario de emisiones más optimista de los dos estudiados (RCP4.5) y en el periodo de impacto correspondiente al corto plazo (2010-2040) son las más prioritarias para la aplicación de medidas de adaptación. En consecuencia, en los apartados siguientes se muestran los resultados para este escenario climático, sin menoscabo del análisis completo que se presenta en los Apéndices 1 y 2.

5. AVANCES EN LOS MODELOS DE RIESGO PARA LOS ECOSISTEMAS

Además de las presiones a las que están sometidas las masas de agua en la situación actual, el efecto del cambio climático supondrá una presión añadida sobre los ecosistemas y los usos.

En el marco de la elaboración del plan de adaptación al cambio climático expuesto en el punto anterior se ha abordado el análisis de riesgos frente al cambio climático de forma independiente a esos otros riesgos debidos a las diferentes presiones expuestas en el anejo VII. Los resultados preliminares se recogen en el documento borrador "Determinación de los mapas de peligrosidad, exposición, vulnerabilidad y riesgo asociados al cambio climático en España" (Pérez Martín, M.A., 2020).

No es objeto de este anejo establecer un análisis combinado de riesgos sino analizar donde serán más patentes los impactos del cambio climático si no se actúa y las zonas prioritarias de actuación, desde el enfoque del cambio climático, para aquellas medidas enfocadas a la minimización de estos impactos. Aunque, como se verá a lo largo del documento, las zonas sometidas a más presión en la actualidad tenderán a verse más castigadas por los riesgos asociados al cambio climático, ya que suponen factores de vulnerabilidad.

Como ya se ha dicho, en términos generales se considera más prioritario actuar en aquellas zonas donde ya se aprecian riesgos en el escenario a corto plazo (PI 2010-2040), y más si cabe cuando estos se prevean en el escenario más optimista de emisiones (RCP4.5). En los siguientes apartados se presenta la información de ambos escenarios de emisiones en el corto plazo, si bien los resultados del resto de escenarios climáticos y periodos de impacto pueden consultarse en los apéndices.

5.1. Pérdida de hábitat para especies de aguas frías

La determinación del riesgo de pérdida de hábitat en las especies de aguas frías, se ha realizado para una las especies de mayor presencia en España: la Trucha común o Trucha marrón, Salmo trutta (Linnaeus, 1758).

El rango de temperatura del agua que determina la adecuación de la especie se ha obtenido a partir de la literatura científica existente y se ha contrastado con la presencia actual de la especie en las masas de agua superficiales. Los valores de referencia son:

- La temperatura que determina la zona de apremio de la especie: temperatura en la que la especie se ve significativamente afectada.
- El límite termal de la especie: valor de temperatura en la que se produce una pérdida total de hábitat.

Dado que se va a evaluar el efecto del aumento de temperatura del agua por efecto del cambio climático se han analizado los valores máximos que puede aguantar la especie durante un periodo continuado. El valor de temperatura que determina la entrada en la zona de apremio, como media mensual, se ha establecido en 18,7 °C, dado que es el límite superior que determina el rango óptimo de la especie (Santiago, 2017). La barrera termal se ha establecido en 21,8 °C (Wehrly & Wang, 2007), como límite máximo de temperatura media del agua.

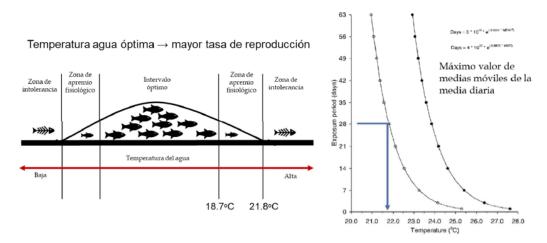


Figura 12. Definición de la zona de apremio y de la barrera termal de la Trucha Común y límites máximos de exposición en días en función de la temperatura media diaria (Wehrly & Wang, 2007)

Como se puede ver en la figura anterior (derecha), de forma puntual la especie puede aguantar temperaturas en el agua de hasta 25 ºC, pero si hablamos de una temperatura sostenida a lo largo de todo un mes este límite baja a los 21,8 ºC ya comentados. La variable, por tanto, que marcará los mapas de peligrosidad es la temperatura media en el mes de agosto, mes en el que se alcanzan las mayores temperaturas.

A partir de la temperatura media del aire en agosto, y mediante las expresiones, de tipo lineal, que relacionan la temperatura del aire y la temperatura del agua para cada ecotipo (CEDEX, 2012), se determina la temperatura del agua en el mes de agosto, con una correlación entre los datos observados y calculados de 0,64.

En primer lugar, se ha calibrado un mapa de exposición nacional en base a la barrera termal, que representa la presencia potencial de la especie. Este mapa se ha comparado con los datos de presencia actual del Atlas y Libro Rojo de los Peces (MMA, 2001). Se considera que los resultados obtenidos suponen una buena aproximación a la realidad. Pese a que solo se ha estudiado el efecto de la temperatura y ningún otro factor de influencia (temporalidad, barreras, calidad del agua o del hábitat...), los tramos obtenidos en base a la barrera termal coinciden exactamente con los tramos identificados con la presencia real de la trucha, a excepción de la masa Río Huerna I, donde el mapa calibrado muestra su presencia potencial pero no se ha detectado en la realidad.

En la siguiente figura se puede ver la calibración para el ámbito de la DHC Occidental.

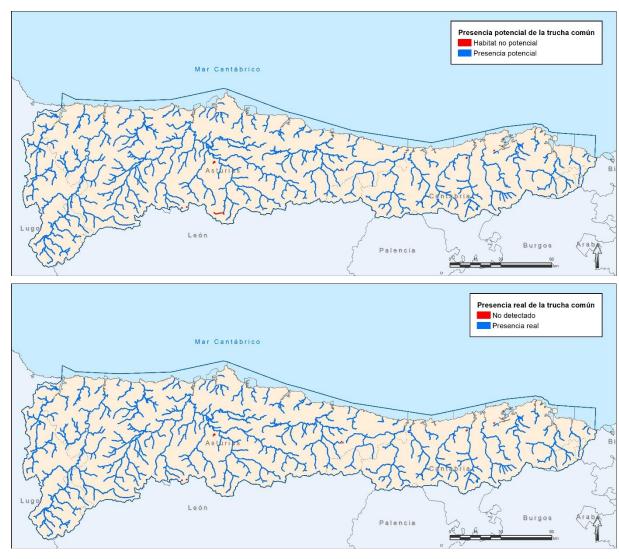


Figura 13. Mapa de Exposición potencial, elaborado en base al límite termal de 21,8 ºC (arriba) y Adaptación de la Presencia de la Trucha Común a las masas de agua superficiales (Atlas y Libro Rojo de los Peces, MMA, 2001) (abajo), en el ámbito de la demarcación

El incremento medio de temperatura del agua en agosto debido al cambio climático se estima entre 0,85 y 1,01º C en el corto plazo, 2010-2040, entre 1,47 y 2,03º C en el medio plazo, 2040-2070, y entre 1,89 y 3,4º C en el largo plazo, 2070-2100. Estos valores se han obtenido como promedio de los seis modelos empleados y el rango marca los valores correspondientes a los escenarios de emisiones RCP 4.5 y RCP 8.5, respectivamente.

El impacto se ha graduado según los siguientes criterios: si en una masa con presencia potencial en la actualidad la temperatura del agua en agosto supera la barrera termal, entrando en la zona de intolerancia de la especie, se define un Impacto Muy Alto; si el incremento de temperatura produce un cambio del intervalo óptimo a la zona de apremio, se considera un Impacto Alto. Finalmente, se considera No Impacto en las zonas de intolerancia actual e Impacto Medio el resto de incrementos de temperatura que suponen un empeoramiento del hábitat sin saltar de la zona optima a la zona de apremio o de la zona de apremio a la de intolerancia.

Los lagos naturales no se han evaluado.

Se presentan a continuación los mapas de impacto para el primer periodo (2010-2040) según ambos escenarios de emisiones: RCP4.5 y RCP8.5. Como se ha expuesto, este periodo de impacto nos indica

aquellas masas que primero van a verse afectadas, incluso aplicando políticas de reducción de emisiones en el caso del escenario RCP4.5, y son por tanto aquellas masas donde se deberá actual de forma prioritaria. El resto de mapas de impacto pueden consultarse en el apéndice 1.

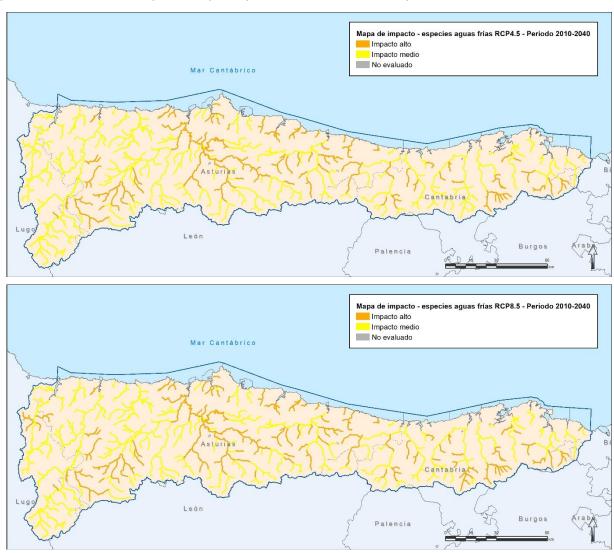


Figura 14. Mapa del impacto potencial a corto plazo (PI1) según ambas sendas de emisiones (RCP4.5 y RCP8.5)

Todas las masas evaluadas se ven afectadas por la pérdida de hábitat potencial, se puede observar que el grado de afección es igual en ambos escenarios de emisiones a corto plazo, salvo los ríos Arroyo de Viaña, Río Besaya I, Arroyo de los Llares I, Río Raíces, Río Nalón II, Río Aller II, Río Aller IV, Río Trubia II, Río de Riotorto, Río Bidueiro, Arroyo de Xudán y Río Turia, que pasan de impacto medio a alto del escenario RCP4.5 al escenario RCP8.5. Por lo tanto, limitándonos a las que tienen un impacto potencial mayor en el escenario más pesimista, de las 252 masas evaluadas, 93 masas, o un 37% del total, presentan impacto potencial alto.

A continuación, el mapa de vulnerabilidad se ha determinado a partir del estado de la vegetación de ribera, considerando que un buen estado de la vegetación de ribera proporciona zonas de sombreado y reduce la cantidad de radiación solar incidente sobre el agua, además de proporcionar refugios para los peces. En contrapartida, un peor estado de la vegetación de ribera hace que el sistema sea más vulnerable al incremento de temperatura.

Como indicador del estado de la vegetación de ribera se ha utilizado el Índice de Calidad del Bosque de Ribera (QBR) (Munné et al., 1998 y 2003). Se considera que la vulnerabilidad es baja cuando el QBR presenta valores correspondientes al estado Muy Bueno y vulnerabilidad alta cuando presenta valores correspondientes al estado Peor que Muy Bueno.

Con respecto al indicador de calidad de la vegetación de ribera empleado, el QBR, cabe apuntar que está en desuso. El pasado año 2019 el MITERD aprobó un nuevo protocolo de caracterización hidromorfológica de las masas de agua que establece un nuevo indicador para evaluar la calidad de la vegetación de ribera. No obstante, dado que este nuevo indicador requiere trabajo de campo intensivo por el momento no se han evaluado un número elevado de las masas de agua.

Si bien por el momento se ha empleado el QBR para los estudios de impacto del cambio climático, por su mayor aplicación hasta la fecha en el ámbito nacional, en el plan de adaptación sería recomendable incluir esté nuevo indicador a medida que su uso se haga más extensivo.



Figura 15. Mapa de vulnerabilidad

Del cruce de los mapas de impacto potencial y vulnerabilidad se obtienen los mapas de riesgo. Estos serán finalmente los que nos indican en qué zonas se deberá actuar de forma prioritaria, dado que además de ser zonas con alta probabilidad de sufrir impacto presentan un mal estado de conservación.

Los criterios empleados para la definición de los rangos de riesgo se presentan en el cuadro siguiente:

		QBR	
		Muy Bueno	Peor que muy bueno
Impacto	Nulo	Nulo	Nulo
	Medio	Bajo	Bajo
	Alto	Medio	Alto
	Muy Alto	Alto	Muv Alto

Tabla 4. Combinación de los mapas de impacto y vulnerabilidad para la definición del riesgo

Así, los mapas de riesgo para el primer periodo de impacto se muestran en la figura siguiente. El resto de mapas de riesgo para los periodos de impacto dos y tres, en ambas sendas de emisiones se pueden consultar en el apéndice 2.

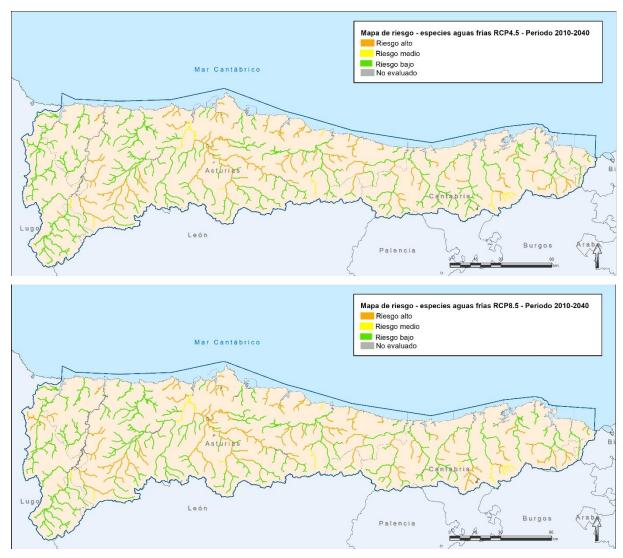


Figura 16. Mapa del riesgo a corto plazo (PI1) según ambas sendas de emisiones (RCP4.5 y RCP8.5)

Tal y como se aprecia en las figuras anteriores, el grado de riesgo obtenido es muy similar en ambas sendas de emisiones, a excepción de cuatro tramos que se han mencionado previamente. Se observa como la mayoría de las masas con un grado medio de impacto por el cambio de temperatura presentan riesgo bajo, debido a la atenuación causada por el buen estado de la vegetación de ribera. Por su parte, 8 masas con un grado de impacto alto muestran un riesgo medio (Río Pas I, Río de la Magdalena, Río Ponga, Arroyo del Acebo, Río Naredo, Río Nalón V, Río de Bustelín y Río Luiña).

Las masas más propensas a sufrir riesgo para las especies piscícolas de aguas frías se encuentran por toda la demarcación. En el sistema de explotación Nalón principalmente en el Arroyo de Vioño, Río Orlé, Río Aller V, Río Cubia II, Río Gillón y Río Muniellos I.

En el sistema del Pas Miera, se ven especialmente afectadas las cuencas de los ríos Revilla y Pas II. También muestran un alto riesgo los ríos ubicados en la parte más baja de los sistemas Llanes y Villaciviosa.

En la cuenca del Deva destaca el Casaño, al igual que en el Asón en su tramo del Río Gándara. En el Navia donde prácticamente la totalidad de la cuenca de la margen derecha se vería notablemente afectada. En el caso del sistema Saja, presenta un riesgo elevado en su tramo del arroyo de Ceceja.

Estas serán, en consecuencia, las primeras zonas donde se deberán plantear medidas para reducir los riesgos frente al cambio climático, con el objetivo último de reducir la temperatura del agua fluyente.

En este sentido, de acuerdo con las conclusiones del proyecto de investigación sobre el análisis del impacto del cambio climático sobre especies piscícolas y ecosistemas fluviales (FIC, 2018c), junto con los propios factores de vulnerabilidad considerados en el plan de adaptación, los factores de mayor influencia en la temperatura del agua y que pueden verse alterados mediante la aplicación de medidas son:

- La vegetación riparia: dado que la sombra directa reduce la temperatura del agua.
- La vegetación de la cuenca vertiente: dado que favorece la infiltración y por tanto la escorrentía subterránea que origina un régimen más frío en verano, en aquellas masas con una fuerte componente hidrogeológica en su alimentación, permitiendo además un microclima más fresco en el área de influencia del río.
- La disponibilidad de caudales adecuados, principalmente en épocas de estiaje, que permiten reducir el calentamiento del agua.
- La adaptación del funcionamiento de embalses: favoreciendo los desembalses hipolimnéticos de fondo frente a los de coronación, que pueden originar una alteración térmica por calentamiento que puede ser crítica en época estival.
- La mejora de la morfología del cauce: reduciendo los tramos dragados y evitando las canalizaciones que favorecen con frecuencia una mayor insolación y reducen la conectividad con el subálveo y por tanto permiten el calentamiento de las aguas.

5.2. Riesgo de reducción del oxígeno disuelto en el agua

La concentración de oxígeno disuelto es uno de los parámetros que se tienen en cuenta para la evaluación del estado físico-químico de las masas de agua superficial. Además, es un parámetro determinante para la presencia y buen estado de la biota acuícola y su reducción puede suponer pérdidas potenciales de hábitat y afectar a otros parámetros y al estado ecológico de la masa en su conjunto.

La temperatura del agua afecta directamente al contenido de oxígeno presente. En el presente apartado se analiza el efecto de dicho aumento de temperatura en el contenido de O₂, sin tener en cuenta otros posibles factores como la calidad del agua, la fotosíntesis, el caudal fluyente o la existencia de turbulencias que favorecen la oxigenación de las aguas.

Por tanto, para evaluar el riesgo de reducción del oxígeno se ha estimado su contenido en el agua (mg/l) en función de las dos principales variables que determinan su solubilidad, la temperatura y la presión atmosférica, que está relacionada con la altitud. (Julien, P., 2018).

La relación entre la temperatura y la concentración de oxígeno, considerando la altitud, se ha modelado mediante la fórmula:

$$OD\left(\frac{mg}{l}\right) = \left(14.7 - 0.0017 Alt(m)\right) exp\left[-0.0225 x T_{agua}(^{\circ}C)\right]$$

La consideración de la altitud mejora significativamente el ajuste del modelo en masas de agua situadas por encima de los 1000 m de altitud, sobre todo en las masas con mayor contenido de oxígeno. El valor medio del percentil superior al 80% coincide en el modelo y los datos observados, siendo de 9,5 mg/l.

Se observa en el gráfico siguiente que el ajuste a valores altos de oxígeno disuelto puede considerarse bueno.

Teniendo en cuenta que las masas que tienen valores bajos de O₂ serán masas influenciadas por algún tipo de presión, y que no es objeto de este anejo hacer un análisis combinado de presiones, se asume que el valor estimado para todas las masas en base a la formulación anterior es representativo de los valores máximos de contenido en oxígeno.

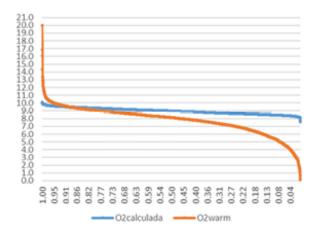


Figura 17. Distribución de la concentración de oxígeno disuelto en agua calculada, en función de la temperatura y la altitud, y observada (mg/l)

Las concentraciones así calculadas en el ámbito de la demarcación se sitúan entre los 8,91 y los 10,11 mg O_2/I , sin mostrar especial distinción entre las concentraciones de los tramos altos y bajos de los ríos, como se puede observar en la siguiente figura.

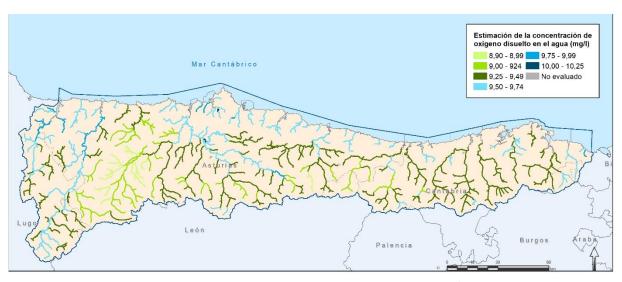


Figura 18. Estimación de la concentración de oxígeno disuelto en el agua (mgO₂/I) calculada en función de la temperatura y la altitud en el mes de agosto

Al igual que en caso anterior, la peligrosidad se vincula a la variación de temperatura del agua por efecto del cambio climático. Así, a partir de la modelización del oxígeno disuelto en función de la temperatura,

y el aumento de temperatura achacable al cambio climático, se evaluaron los impactos potenciales sobre la concentración de oxígeno en el agua.

En base a los valores de referencia de O_2 necesarios para la vida de diversos organismos acuáticos, a efectos del presente estudio, se ha considerado que un contenido por encima de 9 mg O_2 /l es un contenido alto en O_2 y un valor entre 9 y 5,5 mg O_2 /l es un contenido medio (CWAMP,2010). Los resultados de variación de temperatura en el mes de agosto (el mes más crítico) arrojan una reducción de O_2 entre 0,16 y 0,23 mg/l en el escenario RCP4.5 y entre 0,18 y 0,26 mg/l en el RCP8.5. En primer lugar, cabe destacar que estas reducciones en ningún caso producen bajadas del contenido en O_2 por debajo de 5 mg/l, límite entre el estado bueno y moderado para la evaluación de las masas de agua tipo ríos.

El impacto, en consecuencia, se ha graduado según los siguientes criterios: aquellas masas con un contenido potencial actual alto de O_2 que pasan a un contenido medio tienen un impacto potencial alto, mientras que aquellas que se mantienen en el mismo rango de contenido de O_2 presentan un impacto potencial medio.

Así, en la siguiente figura se muestra el impacto potencial a corto plazo, en los escenarios RCP4.5 y RCP8.5. Todas las masas evaluadas se ven impactadas en cierta medida, si bien ninguna alcanza el grado de impacto muy alto, puesto que como se ha comentado el impacto del cambio climático no supondrá en sí mismo un riesgo de no alcanzar el buen estado para este parámetro.

Al igual que ocurría con el parámetro del cambio de temperatura, las masas afectadas por la reducción de oxígeno disuelto son prácticamente las mismas en ambos escenarios de emisiones, salvo en las cabeceras de los ríos correspondientes al Río Duje I, Río Cares I, Arroyo de Valle Moro, Río Monasterio, Río Naviego I, Río Arganza II y Río Llorin.

En términos generales, la mayoría de las masas de la demarcación presentan impacto medio y atendiendo al escenario de emisiones más pesimista, de las 252 masas evaluadas, solamente 22 masas, un 8,7% del total, presentan impacto potencial alto.

A la hora de evaluar los riesgos asociados a estos impactos potenciales, se ha considerado que éstos se pueden ver mitigados en función, nuevamente, de la calidad del bosque de ribera y por tanto del sombreado sobre la masa de agua. Así, nuevamente se ha tenido en cuenta la vulnerabilidad de las masas mediante el índice QBR (aunque habrá que tener en cuenta en el futuro el cambio de indicador propuesto por el protocolo hidromorfológico).

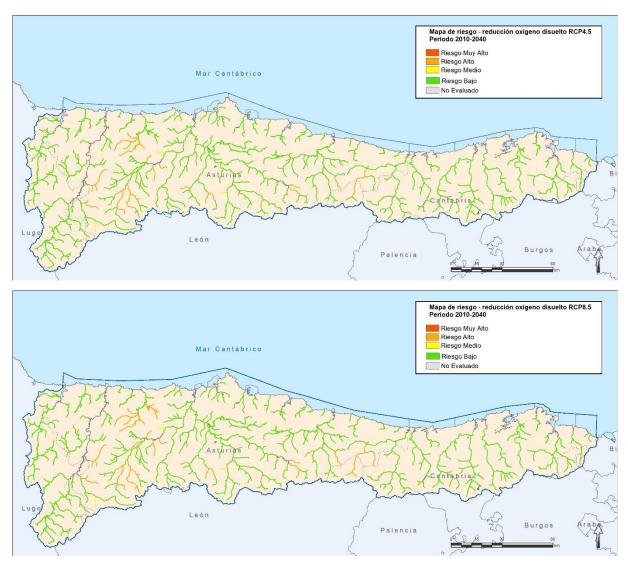


Figura 19. Mapa del riesgo a corto plazo (PI1) debido a la reducción del oxígeno disuelto (RCP4.5 y RCP8.5)

En este caso, 3 masas de las 22 que presentan impacto potencial alto, éste se ve mitigado por la calidad actual de su bosque de ribera. Además, todas las masas con grado medio de impacto presentan un riesgo bajo por la misma razón.

De este modo, la distribución de las masas en alto riesgo por reducción de oxígeno disuelto es similar a las masas con alta potencialidad de impacto. Estos tramos se concentran en el sistema Nalón, concretamente en el tramo alto del río Narcea y en sus afluentes, los ríos Orlé y Tubia II. También presenta alto riesgo el Esva en las zonas de cabecera, el Naraval y Navelgas y Bárcena, y en el Navia los afluentes de río de Aviouga y el arroyo del Oro.

Cabe destacar finalmente, que para valorar el verdadero impacto del cambio climático en la reducción del contenido de O_2 habría que tener en cuenta el efecto combinado de las presiones actuales en el contenido de O_2 y el efecto del cambio climático, que empeorará la situación en aquellas masas que ya presentan mal estado o que están en el límite. En la DHC Occidental no existen en la actualidad masas de agua donde el contenido de O_2 ya se encuentra en valores por debajo de 8 mg/l.

5.3. Riesgo de afección a macroinvertebrados

La evaluación del riesgo de afección del cambio climático a los macroinvertebrados se realiza a partir de la relación entre el índice IBMWP (Iberian Biological Monitoring Working Party), y el incremento esperado en la temperatura del agua.

El IBMWP, es uno de los indicadores más empleados para la evaluación del estado de la fauna bentónica de macroinvertebrados en ríos. Se basa en la asignación de valores de tolerancia a la contaminación a las familias de macroinvertebrados acuáticos, comprendidos entre 1 (familias muy tolerantes) y 10 (familias intolerantes). De manera que la suma de los valores obtenidos para todas las familias en un punto nos dará el grado de contaminación en el punto estudiado o, dicho de otra manera, el estado de la masa de agua.

La relación entre el IBMWP y el efecto del cambio climático se ha establecido obteniendo el % de individuos de macroinvertebrados que cambian su puntuación en función del incremento de temperatura (CEH, 2012).

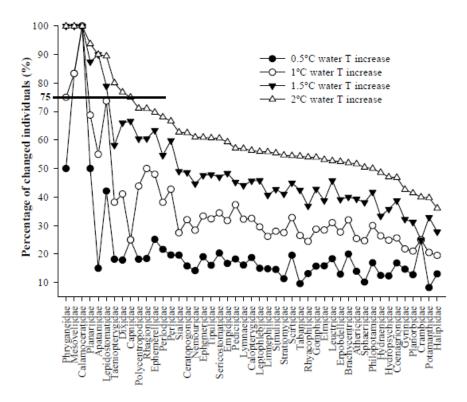


Figura 20. Porcentaje de individuos por familia que experimentan un cambio como resultado de incrementos en la temperatura del agua (método del Óptimo Robusto) (CEH, 2012)

En el gráfico anterior se observa un comportamiento similar en cuanto a la afección para los diferentes grupos de familias. Un incremento de 0,5 °C produce una afección media ponderada del 20% de los individuos y para un incremento de temperatura de 2 °C un grado de afección del 55%. Estos valores se han ajustado de forma lineal mediante la siguiente expresión:

$$Afecci\'{o}n$$
 (%) = 8,52 + 24,98 × ΔT

En la DHC Occidental, según los resultados obtenidos en el escenario RCP4.5 se predice que la temperatura media del agua puede incrementarse entre 0,57 y 0,76°C en la mayoría de las masas de agua.

Destacan la masa Río Ponga que presenta el incremento de temperatura mayor de 0,76°C. Por el contrario, los incrementos más bajos, menores de 0,56°C, se observan prácticamente en la totalidad de los embalses evaluados.

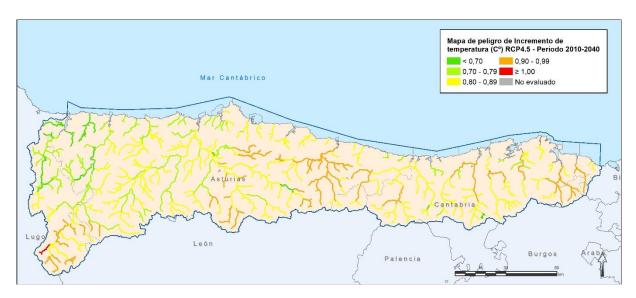


Figura 21. Mapa de peligro: Incremento esperado de la temperatura del agua a corto plazo (PI1) para el escenario de emisiones RCP4.5

Para transformar esta afección en impacto potencial, a partir del valor del IBMWP que define el estado muy bueno por ecotipo en las masas de agua, se determina un nuevo valor del índice en cada escenario evaluado afectado por el incremento de temperatura previsto. A partir de la variación del índice, se valora el % de individuos afectados y el valor del IBMWP resultante. Si la afección supera al 50% de los individuos o produce un descenso en el valor del IBMWP por debajo del límite de cambio de clase entre bueno y moderado, se considera que se produce un Impacto muy alto. En caso de que la afección sea mayor de un 30% o se produzca una reducción del indicador por debajo del límite de cambio de clase entre muy bueno y bueno se considera un impacto alto. Para una afección menor o sin cambio de estado final la afección sería media.

Grado de impacto	Porcentaje de afección	Estado final
Muy alto	>50%	Moderado
Alto	>30%	Bueno
Medio	<30%	Muy bueno

Tabla 5. Grado de Impacto debido a la afección en los macroinvertebrados.

De esta forma, se obtiene una evaluación del impacto del aumento de temperatura en las poblaciones de macroinvertebrados para cada escenario y masa de agua. En la siguiente figura se muestra el impacto potencial a corto plazo, en los escenarios RCP4.5 y RCP8.5.

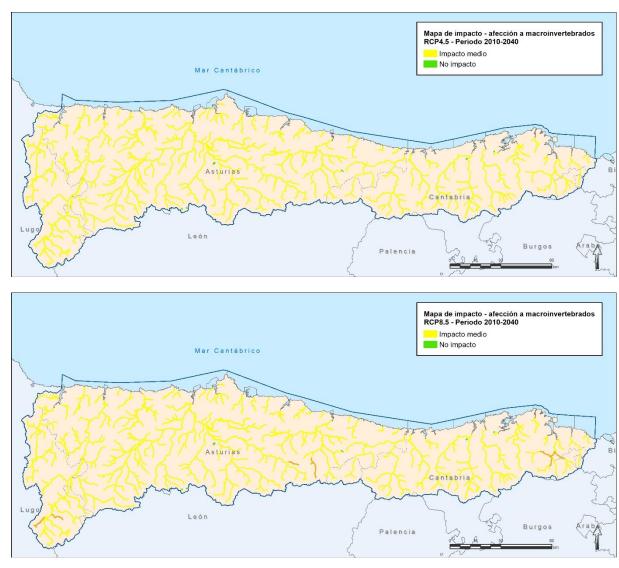


Figura 22. Mapa del impacto potencial a corto plazo (PI1) sobre los macroinvertebrados según la senda de emisiones relativamente optimista (RCP4.5) y la más pesimista (RCP8.5)

Se observa que si se considera la senda de emisiones relativamente optimista (RCP4.5), a corto plazo todas las masas se ven impactadas, aunque todas presentan impactos medios y en ningún caso se observan impactos altos o muy altos. Sin embargo, este resultado se restringe a este escenario y el corto plazo.

Si se considera el escenario de emisiones más pesimista (RCP8.5), varias masas de la demarcación pasarían a sufrir impactos más severos, especialmente en la unidad hidrológica Ibaizabal. Teniendo en cuenta este escenario, de las 252 masas evaluadas, 5 masas, un 2% del total, presentan impacto potencial alto.

Como en las variables anteriores, y en consecuencia con las mismas reservas, dado que la peligrosidad se mide en base al aumento de temperatura, el parámetro considerado para la vulnerabilidad es el QBR.

Los mapas del riesgo para los macroinvertebrados para el primer periodo de impacto en las sendas de emisiones RCP4.5 y RCP8.5, como cruce del impacto y la vulnerabilidad, se muestran en la figura siguiente. El resto de los mapas de riesgo asociados a este indicador, para los periodos de impacto dos

y tres, para ambas sendas de emisiones, RCP4.5 y RCP8.5, se pueden consultar en el apéndice 2 del presente documento.

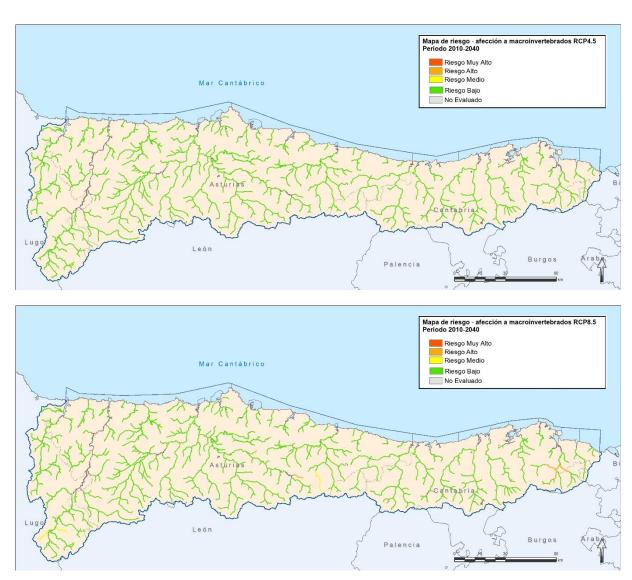


Figura 23. Mapa del riesgo a corto plazo (PI1) para los macroinvertebrados según la senda de emisiones relativamente optimista (RCP4.5) y más pesimista (RCP8.5)

La figura anterior muestra como en el escenario de emisiones más favorable, las masas que presentaban impacto medio se ven mitigadas por la calidad del bosque de ribera, mostrando todas ellas riesgo bajo. En el escenario RCP8.5 ocurre lo mismo, en cambio, entre las masas que presentan impacto alto, solamente en 2 de 5 de ellas el riesgo se atenúa por el estado actual del bosque de ribera.

Por lo tanto, las masas que presentan un riesgo más elevado en la afección a los macroinvertebrados se concentran en Río Asón II y Río Orlé.

6. AFECCIÓN A LOS USOS

En el anejo VI del presente plan se ha analizado, mediante modelos hidrológicos, la principal afección a los usos en relación con el recurso hídrico disponible, analizando el cumplimiento de las garantías para los usos planteados en cada sistema de explotación. Estas estimaciones se han hecho en base los porcentajes de reducción expuestos en el apartado 3.1 del presente anejo.

La reducción de recursos planteada es importante, en concreto, se ha considerado una reducción de las aportaciones respecto de la serie corta en el horizonte 2039 del 5,3% en un escenario medio, y del 11,2% en un escenario pesimista, respecto a las aportaciones del periodo 1980/81-2017/18.

Sin embargo, en el plan se fija como objetivo la reducción de incontrolados en los sistemas urbanos de abastecimiento, limitando el porcentaje máximo de incontrolados en el horizonte 2039 en un 20%. Esta mejora en las redes urbanas supone, en muchos casos, importantes reducciones de demanda que compensarían la reducción de recursos hídricos. Por tanto, en la mayor parte de los sistemas de explotación urbanos no se esperan problemas de garantía.

En lo que respecta a los usos industriales no conectados a redes urbanas, sí se prevén algunos ligeros incrementos de déficit que pueden afectar al abastecimiento de determinadas industrias. En cualquier caso, existe una tendencia clara de reducción de consumos industriales, que de mantenerse podría compensar la disminución de recursos hídricos.

Por otro lado, los usos agrarios no conectados a redes urbanas no son relevantes en la demarcación, por lo que la influencia de las reducciones de recursos no se prevé que sea relevante.

Lamentablemente, la reducción de los recursos o los fenómenos meteorológicos extremos como las inundaciones no son el único peligro vinculado al cambio climático que afecta a los usos. En este sentido, las olas de calor son consideradas por la Organización Mundial de la Salud (OMS) como uno de los fenómenos más peligrosos. El IPCC advertía en su último informe que las olas de calor han aumentado ya su ocurrencia y se espera un aumento de su frecuencia, intensidad y duración en las próximas décadas.

Aunque no se hayan realizado estudios específicos sobre el aumento de demandas como consecuencia del incremento de las olas de calor, es previsible, que puedan darse aumentos puntuales de las mismas, si bien, la reducción de incontrolados prevista en el plan debería ser suficiente para contrarrestar este posible efecto.

Por otra parte, el sistema energético vasco desde el lado de la oferta es muy vulnerable al cambio climático, en especial a acontecimientos extremos como olas de frío y calor, y tormentas. El aumento del nivel del mar e inundaciones costeras y fluviales son amenazas que, obviamente, están muy ligadas a localizaciones concretas, repercutiendo más a las infraestructuras geográficamente ubicadas en costa o cerca de ríos. En determinados casos, estas amenazas pueden afectar de manera decisiva a la infraestructura, que, no contando con una medida de adaptación adecuada, podría quedar completamente inutilizable. Sin embargo, en ocasiones, su repercusión se observa, más que en la instalación en sí, en el acceso a la misma. Dada su ubicación geográfica, la mayor parte de las empresas localizadas en la zona portuaria podrían estar en riego como consecuencia del aumento del nivel del mar.

7. CONCLUSIONES

Como se ha expuesto a lo largo de este documento, se ha tratado de avanzar en la cuantificación de impactos como consecuencia del cambio climático en aquellos aspectos que pueden tener influencia en la gestión del recurso hídrico, particularmente en el medio ambiente asociado y la atención de las demandas. Por el momento se dispone de una estimación basada en las últimas proyecciones climáticas disponibles, aunque no sin incertidumbre, del efecto que el cambio climático tendrá sobre la temperatura, la lluvia y todas las componentes del ciclo hidrológico.

En base a estos cambios en el clima se está avanzando, principalmente en base a los trabajos en el marco del plan de adaptación, en el estudio de la afección sobre los ecosistemas y los usos. La conclusión más general que se obtiene del análisis de riesgos es que nuestros sistemas, están sometidos a un gran número de presiones que van a verse acentuadas por efecto del cambio climático.

No obstante, es de esperar que en la medida en que el plan se desarrolle y se amplíe la evaluación a otras variables se puedan identificar mejor las zonas que presentan mayor riesgo y mejorar el diseño de actuaciones de adaptación.

Haciendo una lectura positiva, como se ha visto a lo largo del presente documento, las medidas apuntadas para la adaptación al cambio climático son totalmente compatibles y en muchos casos coincidentes con las medidas que se recogen en el programa de medidas para el alcance de los objetivos ambientales y la garantía en la atención de las demandas. Así, para evitar el calentamiento del agua de nuestros ríos y evitar la afección a los ecosistemas además de evitar el avance de las especies invasoras se señalan medidas como la restauración fluvial y el mantenimiento de un régimen de caudales adecuado. Para evitar la desertización y los efectos dañinos de las avenidas se apunta a la necesidad de conservar adecuadamente las cubiertas vegetales y los proyectos de reforestación.

Igualmente, para la atención adecuada de las demandas y la superación de eventos de sequía se requiere de una mayor flexibilidad en las fuentes de suministro y el impulso a los recursos no convencionales, así como la mejora de las eficiencias en las redes de suministro.

Por parte de las distintas administraciones competentes, y con un impulso creciente, ya se están abordado muchas actuaciones en todas estas líneas sobre todo en el ámbito de la restauración fluvial y de mejora de la conectividad longitudinal de nuestros ríos.

Queda también pendiente la mejora del conocimiento en muchos aspectos y la reducción de las incertidumbres, si bien hay que asumir que cualquier análisis de riesgos vinculado al cambio climático va a llevar siempre implícita una cierta incertidumbre.

En este sentido para poder avanzar en la cuantificación de riesgos y brechas a salvar en el escenario futuro en condiciones de cambio climático, uno de los aspectos a mejorar es la relación entre los factores climáticos y las variables a analizar, relación que no siempre está cuantificada. Igualmente, en cuanto a los factores de vulnerabilidad que afectan a las variables.

8. REFERENCIAS

- Campos JA, García-Baquero G, Caño L, Biurrun I, García-Mijangos I, Loidi J, et al. (2016) Climate and Human Pressure Constraints Co-Explain Regional Plant Invasion at Different Spatial Scales. PLoS ONE 11(10): e0164629.doi:10.1371/journal.pone.0164629
- CE, 2012. Informe sobre la revisión de la política europea de lucha contra la escasez de agua y la sequía. Comunicación de la Comisión al Parlamento Europeo, al Consejo, al Comité Económico y Social Europeo y al Comité de las Regiones. Comisión Europea, COM(2012) 672 final, Bruselas, 14/11/2012.
 11 pp. Disponible en: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2012:0672:FIN:ES:PDF
- CEH, 2000. Documentación técnica del Plan Hidrológico Nacional. Análisis de los sistemas hidráulicos. Septiembre de 2000. Centro de Estudios Hidrográficos. CEDEX.
- CEH, 2012. Estudio de los Impactos del Cambio Climático en los Recursos Hídricos y las Masas de Agua. Efecto del cambio climático en el estado ecológico de las masas de agua. Informe final. Diciembre de 2012. Centro de Estudios Hidrográficos. CEDEX.
- CEH, 2017. Evaluación del Impacto del Cambio Climático en los Recursos Hídricos y Sequías en España (2015-2017). Informe técnico para el Ministerio de Agricultura, Alimentación y Medio Ambiente. CEDEX, Madrid, julio de 2017.
- CEH, 2020. Incorporación del cambio climático en los planes hidrológico del tercer ciclo. Nota, 26 de octubre de 2020.
- CWAMP, 2010. Folleto informativo sobre oxígeno disuelto. Valores de oxígeno disuelto para la supervivencia de diversas especies acuáticas. California Water Boards. Marzo de 2010.
- FIC, 2018a. *Anticipando el clima para defender las unidades hidrográficas*. Fundación para la investigación del Clima. 2018.
- FIC, 2018c. Análisis del impacto del cambio climático sobre especies piscícolas y ecosistemas fluviales. Fundación para la investigación del Clima. 2018.
- FIC, 2019a. Efecto del cambio climático en las sequías y evaluación del ciclo hidrológico para la agricultura. Fundación para la investigación del Clima. 2019.
- FIC-UPM, 2020. Modelización de distribución de plantas alóctonas invasoras más problemáticas en la península Ibérica. Proyecto SPAINCLIM: Escenarios futuros de índices bioclimáticos en España y aplicación al estudio de especies invasoras.
- Ibañez I, Silander JA Jr, Allen JM, Treanor SA, Wilson A. *Identifying hotspots for plant invasions and forecasting focal points of further spread*. J Appl Ecol. 2009; 46: 1219–1228
- IPCC, 2019. Calentamiento global de 1,5°C. Resumen para responsables de políticas. Unidad de apoyo técnico del grupo de trabajo I. Grupo intergubernamental de expertos del cambio climático. 2019.
- IPCC, 2019. Glosario de términos. Grupo de trabajo II. Grupo intergubernamental de expertos del cambio climático. 2019.

- IPCC, 2014. Cambio climático: Impactos, Adaptación y Vulnerabilidad. 5º informe de evaluación. Grupo de trabajo II. Grupo intergubernamental de expertos del cambio climático. 2014.
- Losada, I.J., Izaguirre, C., Diaz-Simal, P., 2014. *Cambio Climático en la Costa Española. Oficina Española de Cambio Climático*. Ministerio de Agricultura, Alimentación y Medio Ambiente.
- Marini L, Gaston KJ, Prosser F, Hulme PE. Contrasting response of native and alien plant species richness to environmental energy and human impact along alpine elevation gradients. Global Ecol Biogeogr. 2009; 18: 652–661
- MMA, 2005. Evaluación preliminar de los impactos en España por efecto del Cambio Climático. Ministerio de Medio Ambiente. 2005.
- MAGRAMA, 2016. Estrategia de adaptación al cambio climático de la costa española. Ministerio de Agricultura, Alimentación y Medio Ambiente. Diciembre de 2016.
- MITECO, 2021. Ley 7/2021, de 20 de mayo, de cambio climático y transición energética. Ministerio para la Transición Ecológica
- Ministerio para la Transición Ecológica y el Reto Demográfico (2020). Plan Nacional de Adaptación al Cambio Climático. Disponible en: https://www.miteco.gob.es/es/cambio-climatico/temas/impactos-vulnerabilidad-y-adaptacion/plan-nacional-adaptacion-cambio-climatico/default.aspx
- OECC (Oficina Española de Cambio Climático). Proyecto AdapteCCa. Plataforma de intercambio y consulta de información sobre impactos, vulnerabilidad y adaptación al cambio climático en España. Disponible en: https://www.adaptecca.es/
- Pérez Martín, M.A. (2020). Determinación de los mapas de peligrosidad, exposición, vulnerabilidad y riesgo asociados al Cambio Climático en España. Versión borrador. Diciembre de 2020.
- Pino J, Font X, Carbo J, Jove M, Pallarès L. *Large-scale correlates of alien plant invasion in Catalonia* (NE of Spain). Biol Conserv. 2005; 122: 339–350.
- Runyon JB, Butler JL, Megan, Friggens M, Meyer SE, Sing SE. Invasive species and climate change.
 2012. In: Finch, Deborah M., ed. Climate change in grasslands, shrublands, and deserts of the interior American West: a review and needs assessment. Gen. Tech. Rep. RMRS-GTR-285. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 97-115.