

ANEJO 12: CÁLCULOS HIDRÁULICOS

ÍNDICE

1.	OBJE	то	2
2.	CONE	DUCCIONES	2
3.	CÁLC	ULO DE BOMBEOS	4
		Dimensionamiento del bombeo	
4.	ALIVI	ADEROS	8
	4.1.	Resultados	8
APÉN	IDICES		
	Apén	dice 1: Cálculo de tuberías por gravedad	

Apéndice 2: Cálculo de pérdidas de carga en impulsiones

Apéndice 3: Cálculo de bombas

Apéndice 4: Golpe de ariete

Apéndice 5: Cálculo de aliviaderos

Apéndice 6: Cálculos válvula vortex

Apéndice 7: Comprobación hidráulica de la red

1. OBJETO

En el presente *Anejo 12: "Cálculos hidráulicos"* del proyecto de "**Ordenación hidráulicos sanitaria del río Deva en Panes, T.M. de Peñamellera Baja (Asturias)**" se realiza el cálculo hidráulico de las conducciones e infraestructuras hidráulicas.

El procedimiento de cálculo es el indicado en el *Anejo 6: "Criterios generales de diseño"* y los datos usados se han obtenido en el *Anejo 10: "Caudales de diseño"*.

2. CONDUCCIONES

Siguiendo los criterios de diseño establecidos y los caudales estimados, se obtienen los siguientes resultados

Colectores:

Tramo	Caudal (I/s)	Pendiente (%)	Diámetro (mm)	Llenado (%)	Velocidad (m/s)
Colector Panes (i forma progresiva	•		•	os situados ag	guas arriba y de
P1-1 a P1-3	380,60	0,50	600	72,5	1,73
P1-3 a P1-5	380,60	0,50	800	44,4	1,77
P1-5 a P1-6	953,10	0,20	1.000	73,4	1,54
P1-6 a P1-8	1.167,37	0,35	1.000	73,4	1,89
P1-8 a P1-10	2.007,69	0,35	1.200	72,2	2,30
P1-10 a P1-11	2.633,87	0,20	1.500	69,7	2,00
Colector principal (recoge vertidos aliviados procedentes de las impulsiones de Panes y Siejo y vertidos y pluviales del sector C6 de Panes)					
P2-4 a P3-11	809,26	0,50	800	71,2	2,09
Colector Cimiano (recoge vertidos y pluviales de Cimiano)					
P5-1 a P5-6	916,43	1,25	700	73,1	3,04
P5-6 a P3-11	916,43	0,22	1.000	68,6	1,60
Entrada a aliviadero final (recoge aguas sin aliviar del colector principal y del colector de Cimiano)					
P3-11 a ali. fin.	1.359,27	0,50	1.000	67,8	2,40
Ramal Colosía (vertidos aliviados de Colosía)					
a P1-1	4,69	0,50	300	17,7	0,55

Incorporaciones:

Tramo	Caudal (I/s)	Pendiente (%)	Diámetro (mm)	Llenado (%)	Velocidad (m/s)	
Incorporación Pa	nes 2 (vertido	s y pluviales de	l sector C2 de Pa	anes)		
PE-2 a P1-5	826,05	0,50	800	73,0	2,10	
Incorporación Pa	nes 3 (vertido	s y pluviales de	l sector C3 de Pa	anes)		
PE-3 a P1-6	412,02	2,00	800	31,9	2,99	
Incorporación Pa	nes 4 (vertido	s y pluviales de	sector C4 de Pa	anes)		
a P1-8	1.388,70	0,50	1.000	68,9	2,41	
Incorporación Pa	nes 5 (vertido	s y pluviales de	l sector C5 de Pa	anes)		
PI-21 a P1-10	1.231,85	0,50	1.000	63,2	2,35	
Incorporación Pa	Incorporación Panes 7 (vertidos y pluviales del sector C6 de Panes)					
PI-8 a P3-2	694,58	0,50	1.200	34,3	2,03	
Incorporación Siejo 1 (vertidos y pluviales de Siejo y vertidos aliviados de Alevia)						
PI-9 a PI-14	1.343,44	0,50	1.000	67,2	2,39	

Las incorporaciones Panes 2 a Panes 4 se realizan desde un colector existente de diámetro 800 mm, por lo dicho diámetro es el mínimo empleado en las incorporaciones y en el colector de Panes a partir de la primera incorporación. La incorporación Panes 7 de 1.200 mm es una hinca bajo la carretera nacional N-621.

Impulsiones a presión:

Impulsión	Diámetro (mm)	Q _{max} (I/s)	v con Q _{max} (m/s)	Q _{min} (I/s)	L (m)	Tiempo con Q _{min} (h)
Bom. Panes rotura carga	300	103,56	1,47	1,19	351,50	5,8
Bom. Siejo a rotura carga	150	12,27	0,69	0,17	200,00	5,8

Los valores de caudales máximos se refieren a la situación para el año horizonte e incluyendo la posible ampliación del saneamiento a otras poblaciones situadas aguas arriba, mientras que los caudales mínimos se calculan para el año de proyecto y sin la ampliación aguas arriba.

Estos valores se obtienen partiendo de las tablas del *Anejo 10: "Caudales de diseño"*; los caudales de la situación de proyecto se incluyen en la tabla de cálculo de caudales por tramos (Panes y Siejo), mientras que la posible ampliación se calcula sumando los núcleos a los que se puede ampliar el saneamiento (en el bombeo de Panes parroquias de Abándames, Cuñaba y Tobes y núcleo de Suarias y en el bombeo de Siejo parroquia de Alevia).

Cálculos:

Los cálculos hidráulicos de estas conducciones se incluyen en el Apéndice 1: "Cálculo de tuberías por gravedad".

3. CÁLCULO DE BOMBEOS

3.1. Dimensionamiento del bombeo

En este proyecto se incluyen dos bombeos: el de Panes que recoge las aguas de la mayor parte del núcleo de Panes y el de Siejo que recoge las aguas de la localidad de Siejo y de una parte de Panes. Ambos bombeos se encuentran situados en el núcleo de Panes.

Los bombeos se van a calcular para el caudal de salida del aliviadero QAS.

Además de esta condición en los cálculos se va a tener en cuenta la posibilidad de ampliar el saneamiento a otras poblaciones situadas aguas arriba.

Bombeo Panes:

Caudales de bombeo:

Situación	QAS (I/s)
Proyecto	47,47
Ampliación	86,5

Ante esta situación se decide reservar tres huecos para las bombas. En este proyecto se disponen dos bombas. El funcionamiento normal es una bomba parada y otra de reserva. En el caso de que se produzca una posible ampliación funcionarán dos bombas y tendrá que incorporarse una tercera bomba que quedaría de reserva.

El dimensionamiento se realiza para las dos bombas funcionando con el QAS de la situación de posible ampliación.

Características del bombeo:

Cota fondo bombeo	16,73 m
Cota mínima bombeo	17,12 m
Cota incorporación impulsión	22,00 m
Cota salida rotura carga	26,2 m
Caudal diseño	86,5 l/s
Bombas funcionando	2
Tubo salida bombeo	Ø = 150 mm L = 6,50 m
Tubo impulsión	Ø = 300 mm L = 351,50 m

En el *Apéndice 2* se realiza el cálculo de las pérdidas de carga en la impulsión, obteniéndose que se necesitan dos bombas capaz de bombear 86,5 l/s a una altura manométrica de 12,4 m.

Estas características las cumple la bomba modelo XFP150E CB1 50 HZ de la casa ABS y motor PE90/4-E-50 HZ de 9 kW, incluyéndose su justificación en el Apéndice 3 del presente anejo.

Las alturas de bombeos y caudales en función de cuantas bombas estén funcionando es el siguiente:

Nº de bombas	Q (I/s)	H (m)
1	50,3	11,4
2	86,4	12,4

Bombeo Siejo:

Caudales de bombeo:

Situación	QAS (I/s)
Proyecto	6,78
Ampliación	12,27

Ante esta situación se decide reservar dos huecos para las bombas. El funcionamiento normal es una bomba parada y otra de reserva.

El dimensionamiento se realiza para una bomba funcionando con el QAS de la situación de la posible ampliación.

Características del bombeo:

Cota fondo bombeo	13,38 m
Cota mínima bombeo	13,71 m
Cota incorporación impulsión	21,00 m
Cota salida rotura carga	26,2 m
Caudal diseño	12,27 l/s
Bombas funcionando	1
Tubo salida bombeo	Ø = 100 mm L = 8,00 m
Tubo impulsión	Ø = 150 mm L = 200,00 m

En el *Apéndice 2* se realiza el cálculo de las pérdidas de carga en la impulsión, obteniéndose que se necesitan dos bombas capaz de bombear 12,27 l/s a una altura manométrica de 14,7 m.

Estas características las cumple la bomba modelo XFP100E CB1 50 HZ de la casa ABS y motor PE60/4-E-50 HZ de 6 kW, incluyéndose su justificación en el Apéndice 3 del presente anejo.

Las alturas de bombeos y caudales en función de cuantas bombas estén funcionando es el siguiente:

Nº de bombas	Q (I/s)	H (m)
1	13,9	15,3

3.2. Golpe de Ariete

En el Apéndice 4 se incluyen las comprobaciones realizados frente al golpe de ariete en ambos bombeos.

A continuación se incluyen una tabla resumen con las presiones máximas y mínimas de ambos bombeos y tanto para la situación proyectada y ampliada:

Bombeo Panes:

Situación	P _{estática} (mca)	P _{dinámica Max} (mca)	P _{dinámica Min} (mca)
Proyecto	11,40	20,72	-7,26
Ampliada	12,40	23,26	-7,78

Las presiones máximas son pequeñas con lo cual no se necesitan elementos de protección de golpe de ariete.

Para evitar problemas de cavitación debido a las presiones mínimas se colocarán válvulas ventosa.

Bombeo Siejo:

Situación	P _{estática} (mca)	P _{dinámica Max} (mca)	P _{dinámica Min} (mca)
Proyecto/Ampliada	13,40	19,39	-4,23

Las presiones máximas son pequeñas con lo cual no se necesitan elementos de protección de golpe de ariete.

Para evitar problemas de cavitación debido a las presiones mínimas se colocarán válvulas ventosa.

4. ALIVIADEROS

4.1. Resultados

Caudales:

Alviadero	P _{eq} ^h	QAE (I/s)	QAS (I/s)	QAM (I/s)	QAA (I/s)
Panes (proyecto)	2.130	2.580,52	47,47	103,56	2.533,05
Panes (ampliado)	3.872	2.632,65	86,50	188,28	2.546,15
Siejo (proyecto)	323	1.338,06	6,78	15,72	1.331,28
Siejo (ampliado)	535	1.343,86	12,27	26,04	1.331,59
Final (proyecto)	3.205	1.277,88	72,71	155,88	1.205,17
Final (ampliado)	5.159	1.336,37	113,75	205,80	1.222,62

Los aliviaderos se han calculado para la situación de proyecto (conexión de vertidos de poblaciones de Panes, Siejo, Cimiano y Colosía) y para una posible ampliación (conexión de vertidos aliviados del resto de los núcleos situados aguas arriba).

Cámara de regulación y alivio:

Alviadero	VR (m³)	VR _{Mínimo} (m ³)	Alivio (mm)	Regulación	Salida (mm)
Panes (proyecto)	104,5	84,52	1.200	Bomba	300
Panes (ampliado)	137,85	137,35	1.200	Bomba	300
Siejo (proyecto)	59,40	44,14	1.000	Bomba	150
Siejo (ampliado)	59,40	44,14	1.000	Bomba	150
Final (proyecto)	47,40	38,08	1.000	Vortex	400
Final (ampliado)	68,20	61,88	1.000	Vortex	400

Ordenación sanitaria del río Cares-Deva en Panes

Los cálculos hidráulicos de los aliviaderos se incluyen en el *Apéndice 5: "Cálculo de aliviaderos"* de este Anejo.

Dado que el aliviadero final necesita una válvula vortex para regular el caudal de salida, en el Apéndice 6 se incluyen los cálculos correspondientes a las siguientes necesidades:

Altura de agua máxima aguas arriba: 2,63 m

Caudal de salida: 72,71 l/s

Comprobación hidráulica de la red

En situación de alivio, la red de saneamiento entrará en carga debido a la cota de los labios de alivio.

Si bien esta situación es admisible, se debe comprobar que la lámina de agua no rebase las cotas del terreno existente, provocando inundaciones.

Para ello, se ha calculado la lámina de agua en cada pozo de registro a partir de la cota de alivio de cada aliviadero y añadiendo las correspondientes pérdidas de carga utilizando la fórmula de Manning.

En el Apéndice 7 se adjuntan las comprobaciones realizadas, pudiéndose comprobar que la lámina de agua no rebasa el terreno existente en ninguno de los posos proyectados.

APÉNDICES

APÉNDICE 1: CÁLCULO DE TUBERÍAS POR GRAVEDAD

COLECTOR PANES P1-1 a P1-3

Φ (m)	0,600
----------------	-------

h (m)	0,435
α (rad.)	2,039
n	0,013
S (m ²)	0,220
P (m)	1,224
R (m)	0,180
I (%)	0,50

v (m/s)	1,732
Q (I/s)	380,600

COLECTOR PANES P1-3 a P1-5

Φ (m)	0,800
----------------	-------

h (m)	0,355
α (rad.)	1,459
n	0,013
S (m ²)	0,216
P (m)	1,167
R (m)	0,185
I (%)	0,50

v (m/s)	1,765	
Q (I/s)	380,600	

COLECTOR PANES P1-5 a P1-6

Φ (m)	1,000
----------------	-------

h (m)	0,734
α (rad.)	2,058
n	0,013
S (m ²)	0,618
P (m)	2,058
R (m)	0,300
I (%)	0,20

v (m/s)	1,543
Q (I/s)	953,101

COLECTOR PANES P1-6 a P1-8

Φ (m)	1
----------------	---

h (m)	0,691
α (rad.)	1,963
n	0,013
S (m ²)	0,579
P (m)	1,963
R (m)	0,295
l (%)	0,35

v (m/s)	2,017
Q (I/s)	1167,370

COLECTOR PANES P1-8 a P1-10

Φ (m)	1,200
-------	-------

h (m)	0,866
α (rad.)	2,030
n	0,013
S (m ²)	0,874
P (m)	2,436
R (m)	0,359
I (%)	0,35

v (m/s)	2,298
Q (I/s)	2.007,690

COLECTOR PANES P1-10 a P1-11

Φ (m)	1,500
----------------	-------

h (m)	1,046
α (rad.)	1,977
n	0,013
S (m ²)	1,316
P (m)	2,965
R (m)	0,444
I (%)	0,20

v (m/s)	2,002
Q (I/s)	2.633,870

COLECTOR PRINCIPAL

Φ (m)	0,800
----------------	-------

h (m)	0,575
α (rad.)	2,023
n	0,013
S (m ²)	0,386
P (m)	1,618
R (m)	0,239
I (%)	0,50

v (m/s)	2,094
Q (I/s)	809,260

RAMAL CIMIANO P5-1 a P5-6

Φ (m)	0,700
----------------	-------

h (m)	0,512
α (rad.)	2,052
n	0,013
S (m ²)	0,302
P (m)	1,436
R (m)	0,210
I (%)	1,25

v (m/s)	3,038
Q (I/s)	916,430

RAMAL CIMIANO P5-6 a P3-11

Φ (m)	1,000
----------------	-------

h (m)	0,686
α (rad.)	1,952
n	0,013
S (m ²)	0,574
P (m)	1,952
R (m)	0,294
I (%)	0,22

v (m/s)	1,596
Q (I/s)	916,430

ENTRADA ALIVIADERO FINAL

|--|

h (m)	0,678
α (rad.)	1,934
n	0,013
S (m ²)	0,567
P (m)	1,934
R (m)	0,293
I (%)	0,50

v (m/s)	2,399
Q (I/s)	1.359,270

RAMAL COLOSÍA

h (m)	0,053
α (rad.)	0,869
n	0,013
S (m ²)	0,008
P (m)	0,261
R (m)	0,032
I (%)	0,50

v (m/s)	0,554
Q (I/s)	4,690

|--|

h (m)	0,372
α (rad.)	1,501
n	0,013
S (m ²)	0,229
P (m)	1,201
R (m)	0,191
I (%)	2,00

v (m/s)	3,605
Q (I/s)	826,050

Φ (m)	0,800
----------------	-------

h (m)	0,255
α (rad.)	1,200
n	0,013
S (m²)	0,138
P (m)	0,960
R (m)	0,144
l (%)	2,00

v (m/s)	2,985
Q (I/s)	412,020

h (m)	0,689
α (rad.)	1,957
n	0,013
S (m ²)	0,577
P (m)	1,957
R (m)	0,295
I (%)	0,50

v (m/s)	2,408
Q (I/s)	1.388,700

INCORPORACIÓN PANES 5 PI-22 a PI-24

Φ (m)	1,000
----------------	-------

h (m)	0,632
α (rad.)	1,838
n	0,013
S (m²)	0,523
P (m)	1,838
R (m)	0,285
l (%)	0,50

v (m/s)	2,354
Q (I/s)	1.231,850

Φ (m)	1,200
----------------	-------

h (m)	0,411
α (rad.)	1,250
n	0,013
S (m ²)	0,342
P (m)	1,500
R (m)	0,228
I (%)	0,50

v (m/s)	2,031
Q (I/s)	694,580

INCORPORACIÓN SIEJO 1

Φ (m)	1,000
-------	-------

h (m)	0,672
α (rad.)	1,922
n	0,013
S (m²)	0,561
P (m)	1,922
R (m)	0,292
l (%)	0,50

v (m/s)	2,394
Q (I/s)	1.343,440

APÉNDICE 2:

CÁLCULO DE PÉRDIDAS DE CARGA EN IMPULSIONES

Página 1 / 4

Descripción instalación		
luido		
nguas residuales		
Temperatura	293	K
Densidad	998,3	kg/m³
/iscosidad	1,002	mm²/s
ensión de vapor	2339	kPa
oriologia de Vape.	2000	N. G
Sumario		
nstalación sumergida		
Caudal	86,4	I/s
Diferencia de nivel entre el tanque en la impulsión y el nivel de referencia za	9,07	m
'érdidas de carga, lado impulsión, Hv,i1	1,986	m
érdidas de carga, lado impulsión, Hv,i2	1,048	m
Pérdidas de carga, lado impulsión, Hv,i3	0,2589	m
érdidas de carga totales	3,293	m
Itura geometrica total	9,07	m
Itura manométrica total	12,36	m

Página 2 / 4

ıudal					86,4 I
bería					1,81
ntidad	Longitu	Nombre	Velocidad de cau	Rugosidad tubería mm	Pérdidas de pre
	352	Fundiciòn DN 300, PN 16	1,19	0,4	1,81
					0.0000
nt.	DN	Radio del codo mm	Curvo do dorivosi	Rugosidad tubería mm	0,0999 Pérdidas de pre
ui.	304	304	90	0,4	0,0999
	001			0,1	0,0000
rdidas va			1		0,0761
nt.	DN	Nombre			Pérdidas de pre
	300	Salida, rectilínea			0,0761
					1

Página 3 / 4

Caudal					43,2 l/s
Tubería					0,328 n
Cantidad	Longitu	Nombre	Velocidad de cau	Rugosidad tubería mm	Pérdidas de pres
Jantidad 1	6,5	Fundiciòn DN 150, PN 16	2,41	0,4	0,328
/álvula de ci	ierre	1			0,09138 n
Cantidad	DN	Nombre	Marca	Coeficiente de resistencia	Pérdidas de pres
	150	Válvula de compuerta plana DN 150	Desconocido	0,3	0,0914
/alvula antir	retroceso	1			0,4874 ו
Cantidad	DN	Nombre	Marca	Coeficiente de resistencia	Pérdidas de pres
	150	Válvula de clapeta DN 150	Desconocido	1,6	0,487
odo		I.			0,141
Cant.	DN	Radio del codo mm	Curva de derivaci	Rugosidad tubería mm	Pérdidas de pres
érdidas de		l			1,048

Página 4 / 4

		pulsión Hv,d3		20.41/
audal				86,4 1/9
lujo de ent	ada / Exte	ensión sección		0,2589 n
antidad	DN	Nombre	Coeficiente de resistencia	Pérdidas de pres
	150	Codo 90°	0,5	0,152
	150	Flujo de entrada I, 90°	0,35	0,107
		1	 I	1

Página 1 / 5

Descripción instalación				
Fluido	I			
Aguas residuales Temperatura Densidad Viscosidad Tensión de vapor	293 998,3 1,002 2339	K kg/m³ mm²/s kPa		
Sumario				
Instalación en camare inundada Caudal Diferencia de nivel entre el tanque en la impulsión y el nivel de referencia za Pérdidas de carga, lado aspiración, Hv,a Pérdidas de carga, lado impulsión, Hv,i1 Pérdidas de carga, lado impulsión, Hv,i2	12,2 12,4 0,7954 0,8655 0,608	I/s m m m m		
Pérdidas de carga totales Altura geometrica total Altura manométrica total	2,269 12,4 14,67	m m m		

Página 2 / 5

Resistencias, I	Resistencias, lado impulsión Hv,d1					
Caudal					12,2 l/s	
Tubería 0,835 m						
Cantidad 1	Longitu 200	Nombre Fundiciòn DN 150, PN 16	Velocidad de cau 0,681	Rugosidad tubería mm 0,4	Pérdidas de presió 0,835	
Pérdidas varias	S		_		0,0309 m	
Cant.	DN	Nombre			Pérdidas de presió	
1	150	Outlet valve with damper			0,0309	
Pérdidas de ca	rga total	es			0,8655 m	

Bombeo Siejo - QAS - Ampliado Empresa PAYMACotas A cargo deCHC Fecha 05.11.2010

Página 3 / 5

	s, lado asp	piración Hv,s1			
Caudal					12,2 l/s
Tubería					0,286 m
Cantidad 1	Longiti 8	u Nombre Fundiciòn DN 100, PN 16	Velocidad de cau 1,55	Rugosidad tubería mm 0,4	Pérdidas de presi 0,286
Válvula de o	ierre				0,05165 m
Cantidad	DN	Nombre	Marca	Coeficiente de resistencia	Pérdidas de presi
1	100	Mariposa DN 100	Desconocido	0,42	0,0517
Valvula anti	rretroceso				0,2214 m
Cantidad	DN	Nombre	Marca	Coeficiente de resistencia	Pérdidas de presi
1	100	Válvula de clapeta DN 100	Desconocido	1,8	0,221
Codo					0,0634 m
Cant.	DN	Radio del codo mm	Curva de derivaci		Pérdidas de presi
1	100	100	90	0,4	0,0634
Empalme					0,04546 m
Cantidad	DN	Nombre	Marca	Coeficiente de resistencia	Pérdidas de presi
1	100	Ensanchamiento		0,37	0,0455
Pérdidas va	rias				0,127 m
Cant.	DN	Nombre			Pérdidas de presi
1	100	Outlet valve with damper			0,127
	1	T. Control of the Con	1		i i

Bombeo Siejo - QAS - Ampliado Empresa PAYMACotas A cargo deCHC Fecha 05.11.2010 Resistencias, lado aspiración Hv,s1 Pérdida de presión total lado aspiración 0,7954 m

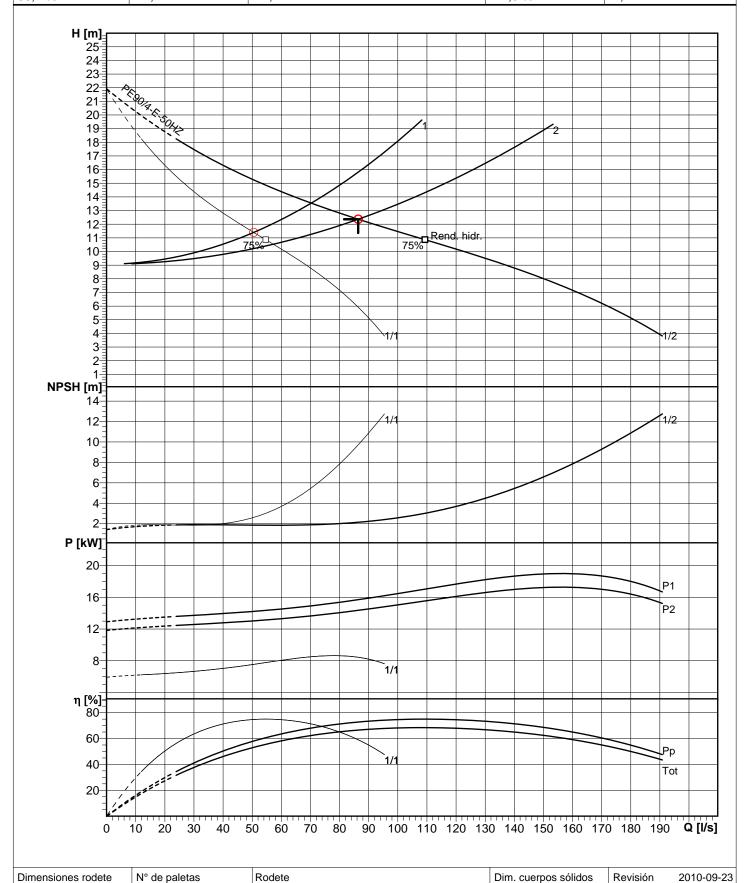
Página 4 / 5

Bombeo Siejo - QAS - Ampliado Empresa PAYMACotas A cargo deCHC Fecha 05.11.2010

Página 5 / 5

Caudal					12,2 1/9
Tubería					0,286 n
Cantidad	Longitu	ı Nombre	Velocidad de cau	Rugosidad tubería mm	Pérdidas de pres
	8	Fundiciòn DN 100, PN 16	1,55	0,4	0,286
/álvula de ci	ierre				0,03689 r
Cantidad	DN	Nombre	Marca	Coeficiente de resistencia	Pérdidas de pres
1	100	Válvula de compuerta plana DN 100	Desconocido	0,3	0,0369
/alvula antir	retroceso	1			0,2214 ı
Cantidad	DN	Nombre	Marca	Coeficiente de resistencia	Pérdidas de pres
	100	Válvula de clapeta DN 100	Desconocido	1,8	0,221
odo		I.			0,0634
Cant.	DN	Radio del codo mm	Curva de derivaci	Rugosidad tubería mm	Pérdidas de pre
érdidas de	carga tota	llas			0,608

APÉNDICE 3: CÁLCULO DE BOMBAS



Curva de performance bomba XFP150E CB1 50HZ

Numero curva

Curva de referencia XFP150E CB1

Boca impulsión DN150 Frecuencia Panes - QAS - Ampliado 50 Hz Densidad Viscosidad Velocidad nominal Fecha Normas de referencia 1000 kg/m³ 05.11.2010 1,57 mm²/s ISO 9906 Gr 2 Annex A1/A2 1465 1/min Caudal Altura Potencia nominal Rendimiento hidráulico NPSH 86,4 l/s 12,4 m 14,4 kW 72,8 % 2,1 m

XFP150E CB1 50HZ

Panes - QAS - Ampliado

XFP

Las bombas XFP (motores PE1 a PE3) de la gama ABS EffeX están diseñadas para el bombeo rentable y fiable de agua limpia, residual y altamente contaminada con materias sólidas, fecales y lodos en aplicaciones comerciales, urbanas e industriales. Accionadas por un motor Premium Efficiency de categoría de eficiencia IE3 establecida por la Norma IEC 60034-30, superior a la clase EFF 1 del CEMEP. Aislamiento del motor de Clase H, aumento de temperatura de Clase A.

Suministro estándar en ejecución anti-deflagrante, ATEX, FM y CSA.

Motor en carga continua tanto para instalación sumergible como en seco de serie. (PE1 y PE2) PE3 ofrece la opción de sistema de refrigeración de circuito cerrado para instalación en seco.

Equipadas con sondas térmicas y detector de humedad de serie.

Hidráulica estándar para aguas residuales con rodete Contrablock Plus que proporciona mejores niveles de resistencia y un excelente transporte de sólidos con grandes pasos de sólidos desde un mínimo de 75 mm.

50 Hz

Caudales hasta 750 m3/h

Altura máx. 74 m

60 Hz

Caudales hasta 3.500 galones EE.UU.

Altura máx. 330 pies

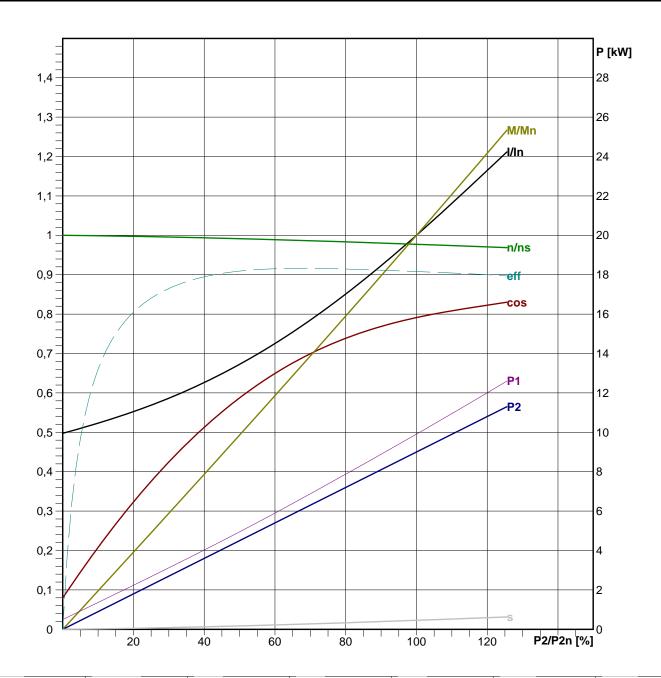
Modelo: XFP150E CB1 50HZ

Datos técnicos

Caudal : 86,4 l/s
Altura de impulsión : 12,4 m
Rendimiento hidráulico : 72,8 %
Rendimiento total : 65,3 %
Potencia en el eje : 14,4 kW

Velocidad : 1465 1/min

Tipo de impulsor : Contrabloc Plus impeller, 1 vane


Potencia del motor : 9 kW
Tensión : 400 V
Frecuencia : 50 Hz
Orificio de aspiración : DN150
Salida de descarga : DN150

Curvas motor PE90/4-E-50HZ

Frecuencia 50 Hz

Panes - QAS - Ampliado

P1 [kW] 0,4971 P2 [kW] 0 I [A] 8,996	2,677 2,25 10,29	4,949 4,5	7,373 6,75	9,911	12,54
I [A] 8,996	· ·	· ·	6,75	9	
	10,29	10.10		0	11,25
off [0/]		12,16	14,77	18,08	21,82
eff [%] 0	84,05	90,92	91,55	90,81	89,72
cos 0,07976	0,3756	0,5875	0,7203	0,7912	0,8295
n [1/min] 1500	1495	1487	1477	1466	1453
M [Nm] 0	14,37	28,9	43,64	58,62	73,92
s [%] 0	0,3251	0,863	1,521	2,265	3,113

Tolerancias potencia nominal según la VDE 0530 T1 12.84

Corriente de arranque	Par de arranque	Momento dinámico	
118 A	121 Nm	0,04 kg m ²	

Massblatt XFP 150E-CB1 Nassinstallation
Dimension sheet WET-WELL Installation
Dimensioni Installazione sommersa
Hoja de dimensiones instalación sumergida
Plan d'encombrement Installation noyee

No: AN-M.22.570 -00

Drawn: 14.07.09/D.Whelan
Issue Date: 14.07.09

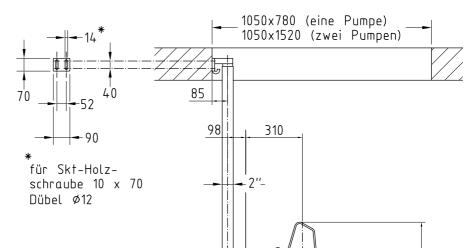
Änderungen vorbehalten
Technical changes reserved
Con riserva di modifiche
Con reserva de modificaciones
Sous réserve de modification

50 Hz

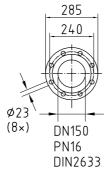
S.I.

工

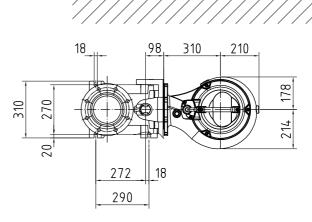
53


Typ Type Tipo	Gewicht Weight Poids Peso (kg)	H (mm)
M 40/4	167.5	783
M 60/4	186	783
M 90/4	197.5	853

min. Schacht?ffnung min. Sump opening Dimensioni min. botola min. apertura del pozo Larqeur min. du puisard


60Hz

Typ Type Tipo	Gewicht Weight Poids Peso	Н
	(kg)	(mm)
M 46/4	167.5	783
M 75/4	186	783
M 105/4	197.5	853


210

DN150

463

280

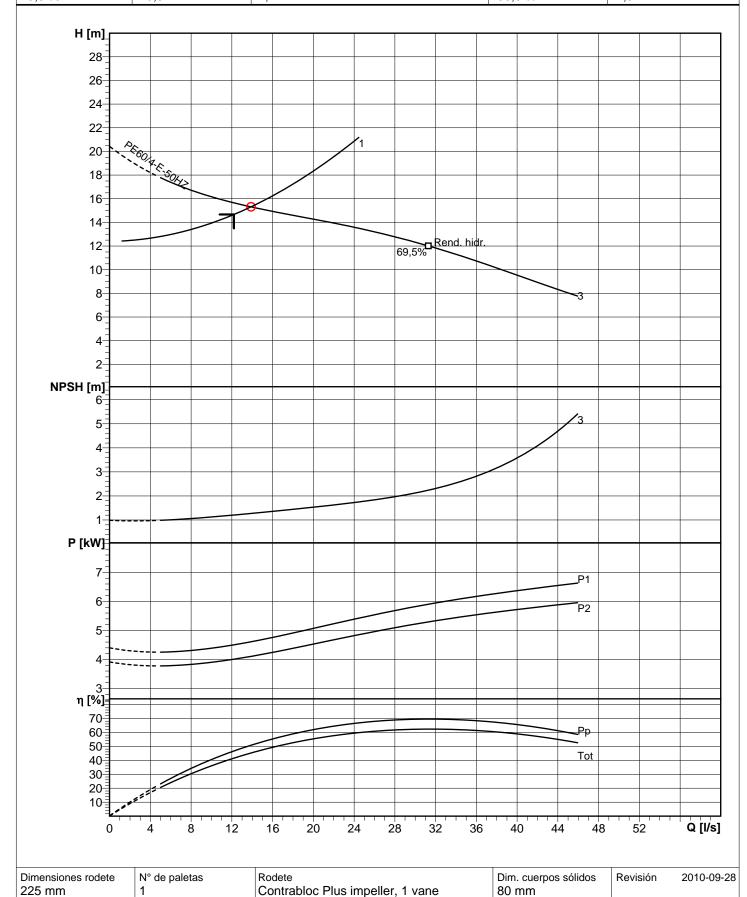
DN150

DN150

Gewicht: Beinhaltet Pumpe und Halterung Weight: Includes pump and slider bracket

Il peso include il pezzo intermedio Peso: Incluve homba y uña

Peso: Incluye bomba y uña Poids: Pompe et coulisseau Guss-Allgemeintoleranzen nach DIN1680 - GTB16 General tolerances for castings in acc. to DIN1680-GTB16 Tolleranze generali delle fusioni secondo DIN1680-GTB16 Tolerancias generales para la fundición seg. de DIN1680-GTB16 Tolérance générale de la fonderie selon DIN1680-GTB16



Curva de performance bomba XFP100E CB1 50HZ

Numero curva

Curva de referencia XFP100E CB1

Boca impulsión DN100 Frecuencia Siejo - QAS - Ampliado 50 Hz Densidad Viscosidad Velocidad nominal Fecha Normas de referencia 1000 kg/m³ 1470 1/min 05.11.2010 1,57 mm²/s ISO 9906 Gr 2 Annex A1/A2 Caudal Altura Potencia nominal Rendimiento hidráulico NPSH 13,9 l/s 15,3 m 4,11 kW 50,8 % 1,3 m

XFP100E CB1 50HZ

Siejo - QAS - Ampliado

XFP

Las bombas XFP (motores PE1 a PE3) de la gama ABS EffeX están diseñadas para el bombeo rentable y fiable de agua limpia, residual y altamente contaminada con materias sólidas, fecales y lodos en aplicaciones comerciales, urbanas e industriales. Accionadas por un motor Premium Efficiency de categoría de eficiencia IE3 establecida por la Norma IEC 60034-30, superior a la clase EFF 1 del CEMEP. Aislamiento del motor de Clase H, aumento de temperatura de Clase A.

Suministro estándar en ejecución anti-deflagrante, ATEX, FM y CSA.

Motor en carga continua tanto para instalación sumergible como en seco de serie. (PE1 y PE2) PE3 ofrece la opción de sistema de refrigeración de circuito cerrado para instalación en seco.

Equipadas con sondas térmicas y detector de humedad de serie.

Hidráulica estándar para aguas residuales con rodete Contrablock Plus que proporciona mejores niveles de resistencia y un excelente transporte de sólidos con grandes pasos de sólidos desde un mínimo de 75 mm.

50 Hz

Caudales hasta 750 m3/h

Altura máx. 74 m

60 Hz

Caudales hasta 3.500 galones EE.UU.

Altura máx. 330 pies

Modelo: XFP100E CB1 50HZ

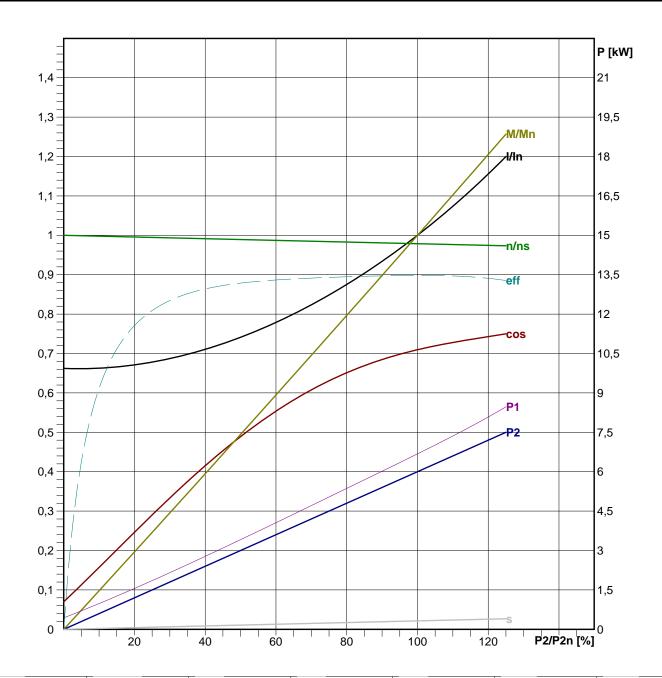
Datos técnicos

Caudal : 13,9 l/s
Altura de impulsión : 15,3 m
Rendimiento hidráulico : 50,8 %
Rendimiento total : 45,2 %
Potencia en el eje : 4,11 kW

Velocidad : 1470 1/min

Tipo de impulsor : Contrabloc Plus impeller, 1 vane

Potencia del motor : 6 kW
Tensión : 400 V
Frecuencia : 50 Hz
Orificio de aspiración : DN100
Salida de descarga : DN100



Curvas motor PE60/4-E-50HZ

Frecuencia 50 Hz

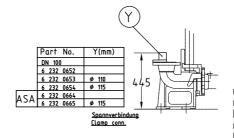
Siejo - QAS - Ampliado

Potencia nominal 6 kW Factor de servicio Velocidad nominal 1470 1/min Numero de polos 4 Tensión nominal 400 V 5.11.2010

Carga	En vacío	25 %	50 %	75 %	100 %	125 %
P1 [kW]	0,4358	1,854	3,414	5,038	6,679	8,472
P2 [kW]	0	1,5	3	4,5	6	7,5
I [A]	8,997	9,214	10,07	11,53	13,59	16,3
eff [%]	0	80,92	87,88	89,32	89,83	88,53
cos	0,06992	0,2904	0,4892	0,6308	0,7096	0,7501
n [1/min]	1500	1492	1484	1476	1468	1460
M [Nm]	0	9,6	19,3	29,11	39,03	49,05
s [%]	0	0,5333	1,067	1,6	2,133	2,667

Tolerancias potencia nominal según la VDE 0530 T1 12.84

Corriente de arranque	Par de arranque	Momento dinámico
88,3 A	81,8 Nm	0,031 kg m ²

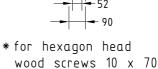

Massblatt XFP 100E-CB1 Nassinstallation Dimension sheet WET-WELL Installation Dimensioni Installazione sommersa Hoja de dimensiones instalacíon sumergida Plan d'encombrement Installation noyee

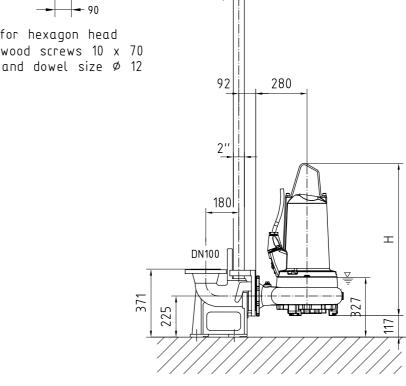
No: AN-M.22.566 - 00 Drawn: 12/05/09 D.Whelan Issue Date: 12.05.09 Änderungen vorbehalten Technical changes reserved Con riserva di modifiche Con reserva de modificaciones Sous réserve de modification

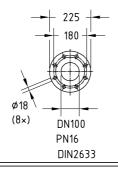
S.I.

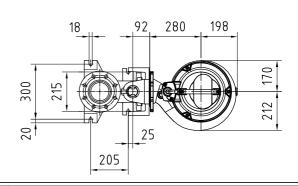
50 Hz

Typ Type Tipo	Gewicht Weight Poids Peso	Н
	(kg)	(mm)
PE 60/4	177	762
PE 90/4	188.5	832


min. Schachtöffnung min. Sump opening Dimensioni min. botola min. apertura del pozo Larqeur min. du puisard


 $1050 \times 1520 (two pumps)$ 780×1050(one pump)


85


60 Hz

Typ Type Tipo	Gewicht Weight Poids Peso (kg)	H (mm)
PE 75/4	177	762
PE 90/4	177	762
PE 105/4	188.5	832

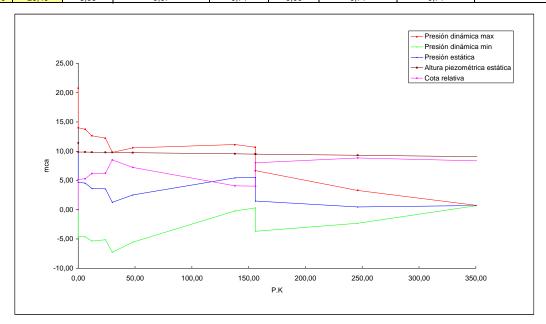
Gewicht: Beinhaltet Pumpe und Halterung Weight: Includes pump and slider bracket Il peso include il pezzo intermedio

Peso: Incluye bomba y uña Poids: Pompe et coulisseau Guss-Allgemeintoleranzen nach DIN1680 - GTB16 General tolerances for castings in acc. to DIN1680-GTB16 Tolleranze generali delle fusioni secondo DIN1680-GTB16 Tolerancias generales para la fundición seg. de DIN1680-GTB16 Tolérance générale de la fonderie selon DIN1680-GTB16

APÉNDICE 4:

GOLPE DE ARIETE

ESTUDIO DE PRESIONES - PANES - QAS PROYECTO


Φ_n (mm)	300,00
e (mm)	6,20
K	1,00
Q (I/s)	50,50
H _m (mca)	11,40
H _g (mca)	9,07

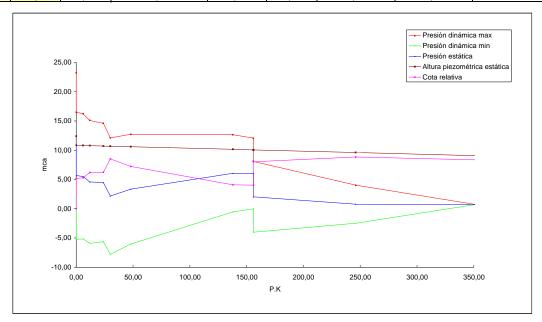
FACTOR K				
FD	1,00			
FC	5,50			
PVC	33,30			
PEBD	500,00			
PEAD	111,11			
PRFV	3,57			

L (m)	351,50
v (m/s)	0,71
α (m/s)	1.006,82
H _g (mca)	8,36
С	1,00
K'	2,00
T (s)	5,49
L _c (m)	2.764,21

TIPO DE IMPULSION	CORTA
FORMULA	MICHAUD

P.K (m)	Z _{absoluta} (m)	Z _{relativa} (m)	H _{piezométrica} (mca)	P _{estática} (mca)	ΔP (mca)	P _{dinámica} Max (mca)	P _{dinámica} Min (mca)	Elemento de protección
0,00	17,13	0,00	11,40	11,40	9,32	20,72	2,08	
0,00	22,30	5,17	9,86	4,69	9,32	14,01	-4,63	
6,00	22,42	5,29	9,85	4,56	9,16	13,72	-4,61	
12,00	23,32	6,19	9,83	3,64	9,01	12,65	-5,36	
24,00	23,38	6,25	9,81	3,56	8,69	12,24	-5,13	
30,00	25,65	8,52	9,79	1,27	8,53	9,80	-7,26	
48,00	24,37	7,24	9,75	2,51	8,05	10,56	-5,54	Ventosa
138,00	21,22	4,09	9,55	5,46	5,66	11,12	-0,20	
156,00	21,15	4,02	9,51	5,49	5,19	10,68	0,31	
156,00	25,15	8,02	9,51	1,49	5,19	6,68	-3,70	
246,00	25,96	8,83	9,31	0,48	2,80	3,28	-2,32	Ventosa
351,50	25,49	8,36	9,07	0,71	0,00	0,71	0,71	

ESTUDIO DE PRESIONES - PANES - QAS AMPLIADO


Φ_n (mm)	300,00
e (mm)	6,20
K	1,00
Q (I/s)	86,40
H _m (mca)	12,40
H _g (mca)	9,07

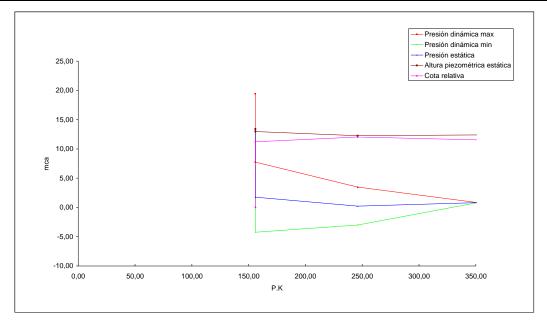
FACTOR K				
FD	1,00			
FC	5,50			
PVC	33,30			
PEBD	500,00			
PEAD	111,11			
PRFV	3,57			

L (m)	351,50
v (m/s)	1,22
α (m/s)	1.006,82
H _g (mca)	8,36
С	1,00
K'	2,00
T (s)	8,06
L _c (m)	4.059,45

TIPO DE IMPULSION	CORTA
FORMULA	MICHAUD

P.K (m)	Z _{absoluta} (m)	Z _{relativa} (m)	H _{piezométrica} (mca)	P _{estática} (mca)	ΔP (mca)	P _{dinámica} Max (mca)	P _{dinámica} Min (mca)	Elemento de protección
0,00	17,13	0,00	12,40	12,40	10,86	23,26	1,54	
0,00	22,30	5,17	10,83	5,66	10,86	16,52	-5,20	
6,00	22,42	5,29	10,80	5,51	10,68	16,19	-5,17	
12,00	23,32	6,19	10,77	4,58	10,49	15,07	-5,91	
24,00	23,38	6,25	10,71	4,46	10,12	14,58	-5,66	
30,00	25,65	8,52	10,68	2,16	9,94	12,09	-7,78	
48,00	24,37	7,24	10,59	3,35	9,38	12,73	-6,03	Ventosa
138,00	21,22	4,09	10,14	6,05	6,60	12,65	-0,55	
156,00	21,15	4,02	10,05	6,03	6,04	12,08	-0,01	
156,00	25,15	8,02	10,05	2,03	6,04	8,07	-4,01	
246,00	25,96	8,83	9,60	0,77	3,26	4,03	-2,49	Ventosa
351,50	25,49	8,36	9,07	0,71	0,00	0,71	0,71	

ESTUDIO DE PRESIONES - SIEJO - QAS


Φ_n (mm)	150,00
e (mm)	5,00
K	1,00
Q (I/s)	13,50
H _m (mca)	13,40
H _g (mca)	12,40

FACTOR K			
FD	1,00		
FC	5,50		
PVC	33,30		
PEBD	500,00		
PEAD	111,11		
PRFV	3,57		

L (m)	351,50
v (m/s)	0,76
α (m/s)	1.118,80
H _g (mca)	11,56
С	1,00
K'	2,00
T (s)	5,09
L _c (m)	2.844,83

TIPO DE IMPULSION	CORTA
FORMULA	MICHAUD

P.K (m)	Z _{absoluta} (m)	Z _{relativa} (m)	H _{piezométrica} (mca)	P _{estática} (mca)	ΔP (mca)	P _{dinámica} Max (mca)	P _{dinámica} Min (mca)	Elemento de protección
156,00	13,78	0,00	13,40	13,40	5,99	19,39	7,41	
156,00	25,00	11,22	12,98	1,76	5,99	7,74	-4,23	
246,00	25,81	12,03	12,27	0,24	3,23	3,47	-2,99	Ventosa
351,50	25,34	11,56	12,40	0,84	0,00	0,84	0,84	

APÉNDICE 5: CÁLCULO DE ALIVIADEROS

Cálculos Hidráulicos Aliviadero	Panes (situación Proyecto)
	pluviales:Panes
Localidades	vertidos: Colosía

P _{equiv,h}	2.130
P _{equiv,a}	1.240
I (mm/h)	43,5
t _c (min)	40
S _{Drenada Total Neta} (ha)	21,13
S _{Industrial Bruta} (ha)	0,00

Resultados Caudales

QD _m ^h (I/s)	6,25
QD _p ^h (I/s)	19,38
QI _m ^h (I/s)	2,38
QI _p ^h (I/s)	3,81
QP (I/s)	2.553,21
QP* (I/s)	211,30
QF (I/s)	4,12

QAE (I/s)	2.580,52
QAE* (I/s)	238,61
QAS (I/s)	47,47
QAM (I/s)	103,56
QAA (I/s)	2.533,05

Datos Aliviadero-Bombeo

Cota labio de alivio (m)	19,50
Cota fondo bombeo (m)	16,73
Cota fondo camara retención (m)	17,53
Cota fondo cámara central (m)	17,40
h (m)	0,35
W (m)	2,10
Ancho cámara retención (m)	4,60
Ancho cámara central	1,80
Ancho bombeo (m)	1,80
Largo labio de Alivio (m)	7,00
Largo bombeo (m)	2,93
J (%)	2,00
$\Phi_{ ext{salida}}(ext{m})$	0,40
$\Phi_{ extsf{alivio}}\left(extsf{m} ight)$	1,20

Resultados de Retención

X (min)	3,82
VR _{Mínimo} (m ³)	84,52
VR (m³)	104,50
CUMPLE	SI

Resultados Labio

Fórmula	REHBOCK
Cd	0,621077
q (I/s/m)	379,76
L _{min} (m)	6,67
CUMPLE	SI

Resultados Tubo de Alivio

v (m/s)	2,24
CUMPLE	SI

Regulación salida

No procede . Se regula mediante bomba $\,$

Cálculos Hidráulicos Aliviadero	Panes (ampliado aguas arriba)	
	pluviales:Panes	
	vertidos: Colosía, Suarias, parroquia de	
	Abándames, parroquia de Cuñaba, parroquia	
Localidades	de Tobes	

P _{equiv,h}	3.872
P _{equiv,a}	2.343
I (mm/h)	43,5
t _c (min)	40
S _{Drenada Total Neta} (ha)	21,13
S _{Industrial Bruta} (ha)	0,00

Resultados Caudales

QD _m ^h (I/s)	11,26
QD _p ^h (I/s)	64,57
QI _m ^h (I/s)	4,43
QI _p ^h (I/s)	7,09
QP (I/s)	2.553,21
QP* (I/s)	211,30
QF (I/s)	7,78

QAE (I/s)	2.632,65
QAE* (I/s)	290,74
QAS (I/s)	86,50
QAM (I/s)	188,28
QAA (I/s)	2.546,15

Datos Aliviadero-Bombeo

Cota labio de alivio (m)	19,50
Cota fondo bombeo (m)	16,73
Cota fondo camara retención (m)	17,53
Cota fondo cámara central (m)	17,38
h (m)	0,35
W (m)	2,12
Ancho cámara retención (m)	7,00
Ancho cámara central	1,80
Ancho bombeo (m)	1,80
Largo labio de Alivio (m)	7,00
Largo bombeo (m)	2,93
J (%)	2,00
Φ_{salida} (m)	0,40
$\Phi_{ ext{alivio}}(ext{m})$	1,20

Resultados de Retención

X (min)	1,34
VR _{Mínimo} (m ³)	137,35
VR (m³)	137,85
CUMPLE	SI

Resultados Labio

Fórmula	REHBOCK
Cd	0,620951
q (I/s/m)	379,68
L _{min} (m)	6,71
CUMPLE	SI

Resultados Tubo de Alivio

v (m/s)	2,25
CUMPLE	SI

Regulación salida

No procede . Se regula mediante bomba

Cálculos Hidráulicos Aliviadero	Siejo (situación proyecto)
Localidades	Siejo

P _{equiv,h}	323
P _{equiv,a}	181
I (mm/h)	70,6
t _c (min)	15
S _{Drenada Total Neta} (ha)	6,79
S _{Industrial Bruta} (ha)	0,00

Resultados Caudales

QD _m ^h (I/s)	1,16
QD _p ^h (I/s)	5,67
QI _m ^h (I/s)	0,15
QI _p ^h (I/s)	0,24
QP (I/s)	1.331,59
QP* (I/s)	67,90
QF (I/s)	0,56

QAE (I/s)	1.338,06
QAE* (I/s)	74,37
QAS (I/s)	6,78
QAM (I/s)	15,72
QAA (I/s)	1.331,28

Datos Aliviadero-Bombeo

Cota labio de alivio (m)	18,75
Cota fondo bombeo (m)	13,38
Cota fondo camara retención (m)	13,94
Cota fondo cámara central (m)	13,94
h (m)	0,50
W (m)	4,81
Ancho cámara retención (m)	0,00
Ancho cámara central	1,50
Ancho bombeo (m)	1,50
Largo labio de Alivio (m)	6,00
Largo bombeo (m)	2,00
J (%)	2,00
Φ_{salida} (m)	0,30
$\Phi_{ extsf{alivio}}(extsf{m})$	1,00

Resultados de Retención

X (min)	0,07
VR _{Mínimo} (m ³)	44,14
VR (m ³)	59,40
CUMPLE	SI

Resultados Labio

Fórmula	REHBOCK
Cd	0,615232
q (I/s/m)	642,32
L _{min} (m)	2,07
CUMPLE	SI

Resultados Tubo de Alivio

v (m/s)	1,70
CUMPLE	SI

Regulación salida

No procede . Se regula mediante bomba

Cálculos Hidráulicos Aliviadero	Siejo (ampliado aguas arriba)
	pluviales: Siejo
Localidades	vertidos: Alevia

P _{equiv,h}	535
P _{equiv,a}	315
I (mm/h)	70,6
t _c (min)	15
S _{Drenada Total Neta} (ha)	6,79
S _{Industrial Bruta} (ha)	0,00

Resultados Caudales

QD _m ^h (I/s)	1,87
QD _p h (I/s)	10,81
QI _m ^h (I/s)	0,30
QI _p ^h (I/s)	0,48
QP (I/s)	1.331,59
QP* (I/s)	67,90
QF (I/s)	0,98

QAE (I/s)	1.343,86
QAE* (I/s)	80,17
QAS (I/s)	12,27
QAM (I/s)	26,04
QAA (I/s)	1.331,59

Datos Aliviadero-Bombeo

Cota labio de alivio (m)	18,75
Cota fondo bombeo (m)	13,38
Cota fondo camara retención (m)	13,94
Cota fondo cámara central (m)	13,94
h (m)	0,50
W (m)	4,81
Ancho cámara retención (m)	0,00
Ancho cámara central	1,50
Ancho bombeo (m)	1,50
Largo labio de Alivio (m)	6,00
Largo bombeo (m)	2,00
J (%)	2,00
Φ_{salida} (m)	0,30
$\Phi_{ ext{alivio}} \left(ext{m} ight)$	1,00

Resultados de Retención

X (min)	0,00
VR _{Mínimo} (m ³)	44,14
VR (m ³)	59,40
CUMPLE	SI

Resultados Labio

Fórmula	REHBOCK
Cd	0,615232
q (I/s/m)	642,32
L _{min} (m)	2,07
CUMPLE	SI

Resultados Tubo de Alivio

v (m/s)	1,70
CUMPLE	SI

Regulación salida

No procede . Se regula mediante bomba $\,$

Cálculos Hidráulicos Aliviadero	Final (situación proyecto)
	pluviales: Panes C6, Cimiano
Localidades	vertidos: Panes, Colosía, Siejo

P _{equiv,h}	3.205
P _{equiv,a}	1.777
I (mm/h)	55,2
t _c (min)	25
S _{Drenada Total Neta} (ha)	8,05
S _{Industrial Bruta} (ha)	1,47

Resultados Caudales

QD _m ^h (I/s)	8,77
QD _p ^h (I/s)	30,90
QI _m ^h (I/s)	4,22
QI _p ^h (I/s)	6,75
QP (I/s)	1.234,33
QP* (I/s)	80,50
QF (I/s)	5,90

QAE (I/s)	1.277,88
QAE* (I/s)	124,05
QAS (I/s)	72,71
QAM (I/s)	155,88
QAA (I/s)	1.205,17

Datos Aliviadero

CotalLabio de alivio (m)	25,25
Cota fondo camara retención (m)	23,17
Cota fondo cámara central (m)	23,09
h (m)	0,50
W (m)	2,16
Ancho cámara retención (m)	3,00
Ancho cámara central	1,50
Largo labio (m)	5,00
J (%)	2,00
$\Phi_{ m salida}$ (m)	0,40
$\Phi_{ extsf{alivio}}(extsf{m})$	1,00

Resultados de Retención

X (min)	9,06
VR _{Mínimo} (m ³)	38,08
VR (m³)	47,40
CUMPLE	SI

Resultados Labio

Fórmula	REHBOCK
Cd	0,625434
q (I/s/m)	652,97
L _{min} (m)	1,85
CUMPLE	SI

Resultados Tubo de Alivio

v (m/s)	1,53
CUMPLE	SI

Regulación salida

Condición 1

S (m ²)	0,1257
Q (I/s)	
mínimo	155,88
evacuado	817,04
CUMPLE	SI

Condición 2

(usar tajadera)

(
S (m²)	0,0246
Q (I/s)	
máximo	72,71
evacuado	159,73
CUMPLE	NO

Condición 3
(evacuación sin Iluvia)

(evacuación sin liuvia)	
S (m ²)	0,0628
Q (I/s)	
mínimo	43,55
evacuado	115,57
CUMPLE	٩ı

Cálculos Hidráulicos Aliviadero	Final (ampliado aguas arriba)
	pluviales: Panes C6, Cimiano
	vertidos: Panes, Colosía, Siejo, Suarias,
	Alevia, parroquia de Abándames, parroquia
Localidades	de Cuñaba, parroquia de Tobes

P _{equiv,h}	5.159
P _{equiv,a}	3.014
I (mm/h)	55,2
t _c (min)	25
S _{Drenada Total Neta} (ha)	8,05
S _{Industrial Bruta} (ha)	1,47

Resultados Caudales

QD _m ^h (I/s)	10,12
QD _p ^h (I/s)	81,23
QI _m ^h (I/s)	7,03
QI _p ^h (I/s)	11,25
QP (I/s)	1.234,33
QP* (I/s)	80,50
QF (I/s)	9,56

QAE (I/s)	1.336,37
QAE* (I/s)	182,54
QAS (I/s)	113,75
QAM (I/s)	205,80
QAA (I/s)	1.222,62
QAA (I/s)	1.222,62

Datos Aliviadero

Cota labio de alivio (m)	25,25
Cota fondo camara retención (m)	23,17
Cota fondo cámara central (m)	23,09
h (m)	0,50
W (m)	2,16
Ancho cámara retención (m)	5,00
Ancho cámara central	1,50
Largo labio (m)	5,00
J (%)	2,00
$\Phi_{salida}(m)$	0,30
$\Phi_{\text{alivio}}(\text{m})$	1,00

Resultados de Retención

X (min)	3,64		
VR _{Mínimo} (m ³)	61,88		
VR (m³)	68,20		
CUMPLE	SI		
Resultados Labio			

Fórmula	REHBOCK
Cd	0,625434
q (I/s/m)	652,97
L _{min} (m)	1,87
CUMPLE	SI

Resultados Tubo de Alivio

v (m/s)	1,56
CUMPLE	SI

Regulación salida

Condición 1

S (m ²)	0,0707
Q (I/s)	
mínimo	205,80
evacuado	414,14
CUMPLE	SI

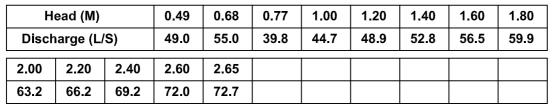
Condición 2 (usar tajadera)

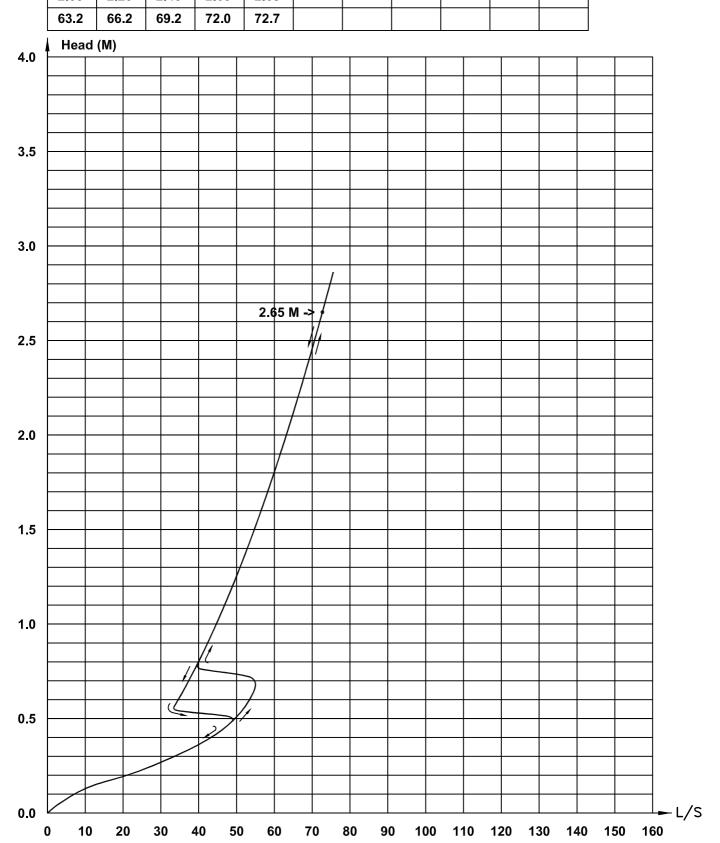
S (m²)	0,0937	
Q (I/s)		
máximo	113,75	
evacuado	1.798,27	
CUMPLE	NO	

Condición 3

(evacuación s	iii iiuvia)	
S (m ²)	0,0937	
Q (I/s)		
mínimo	ínimo 102,04	
evacuado	173,10	
CHMDLE	ÇI.	

APÉNDICE 6: CÁLCULOS VÁLVULA VORTEX


HIDROSTANK, S.L.
POL. INDUSTRIAL LA NAVA S/N
31300 TAFALLA
Tfno: 948 74 11 10 Fax: 948 74 18 90
www.hidrostank.com info@hidrostank.com



Vaerkstedsvej 20 DK-4600 Koege, Denmark Tel +45 56 63 85 80 Fax +45 56 63 86 80

Date 08.11.2010 Ref. No. 22751-1 Type CYDX 750-PP250-C225/ **BCTWL** Q = 72.71 I/s at h = 2.65 m

Your ref. VT 1369 Head/discharge curve

APÉNDICE 7:

COMPROBACIÓN HIDRÁULICA DE LA RED

Aliviadero Panes		Longitud Alivio (m)	7,00
		Cota Tapa (m)	23,40
		Cota Fondo (m)	13,88
		Cota Alivio (m)	21,65
		Cota Lámina (m)	19,85
			-3,55 O.K.
P1-11			3,35 U.K.
ρ (m) 0,75	S (m ²) 1,7		12,00
Q (l/s) 2.633,87	Pe (m) 4,7		23,60
n 0,013	R (m) 0,3		14,02
	J 0,001		19,87
	ΔH (m) 0,0	2 CARGA	-3,73 O.K.
P1-10		CARGA	-5,75 O.K.
ρ (m) 0,50	S (m ²) 0,79	Longitud (m)	60,00
Q (l/s) 2.633,87	Pe (m) 3,1	Cota Tapa (m)	21,52
n 0,013	R (m) 0,2	Cota Fondo (m)	17,61
	J 0,012		20,59
	ΔH (m) 0,73	2 CARGA	-0,92 O.K.
P1-9		CARGA	-0,92 O.K.
ρ (m) 0,60	S (m ²) 1,1	Longitud (m)	69,60
Q (l/s) 2.007,69	Pe (m) 3,7		22,88
n 0,013	R (m) 0,3		18,16
	J 0,002		20,78
	ΔH (m) 0,1		-2,10 O.K.
P1-8		CARGA	-2,10 O.K.
ρ (m) 0,60	S (m ²) 1,1	Longitud (m)	69,60
Q (l/s) 2.007,69	Pe (m) 3,7	Cota Tapa (m)	21,94
n 0,013	R (m) 0,3	Cota Fondo (m)	18,40
	J 0,002	Cota Lámina (m)	20,96
	ΔH (m) 0,1		0.08
P1-7		CARGA	-0,98 O.K.
ρ (m) 0,50	S (m ²) 0,79	Longitud =	40,80
Q (l/s) 380,60	Pe (m) 3,14		21,72
n 0,013	R (m) 0,2		18,73
	J 0,000	Cota Lámina =	20,97
	ΔH (m) 0,0		
P1-6		CARGA	-0,75 O.K.
ρ (m) 0,50	S (m ²) 0,7	Longitud (m)	64,80
Q (l/s) 380,60	Pe (m) 3,14		21,05
n 0,013	R (m) 0,2		18,92
	J 0,000		20,99
	ΔH (m) 0,0		
P1-5		CARGA	-0,06 O.K.
ρ (m) 0,50	S (m ²) 0,7	Longitud (m)	134,40
Q (l/s) 380,60	Pe (m) 3,1		21,06
n 0,013	R (m) 0,2		19,19
	J 0,000		21,02
	ΔH (m) 0,0		
P1-4		CARGA	-0,04 O.K.
ρ (m) 0,30	S (m ²) 0,2	Longitud (m)	100.80
Q (l/s) 380,60	Pe (m) 1,8		21,60
n 0,013	R (m) 0,1		19,89
	J 0,003	Cota Lámina (m)	21,41
	ΔH (m) 0,3		0.40
P1-3		CARGA	-0,19 O.K.
ρ (m) 0,30	S (m ²) 0,2	Longitud (m)	91,20
Q (l/s) 380,60	Pe (m) 1,8		22,00
n 0,0130	R (m) 0,1	Cota Fondo (m)	20,35
	J 0,003		21,76
	ΔH (m) 0,3		-0,24 O.K.
P1-2		CARGA	-0,24 O.K.
ρ (m) 0,30	S (m ²) 0,2		84,00
Q (l/s) 380,60	Pe (m) 1,8	Cota Tapa (m)	22,28
n 0,0130	R (m) 0,1		20,96
	J 0,003 ΔH (m) 0,3		21,73
	<u> </u>	CARGA	-0,55 O.K.
P1-1	2.		
ρ (m) 0,30	S (m ²) 0,2		40,80
Q (l/s) 380,60	Pe (m) 1,8		23,19 21,17
n 0,0130	R (m) 0,1: J 0,003		21,17
	ΔH (m) 0,10		2.,55
		CARGA	-1,30 O.K.
P6-13	3		
ρ (m) 0,15	S (m ²) 0,0		136,80
Q (I/s) 4,69	Pe (m) 0,9		25,36
n 0,0130	R (m) 0,0		24,20
	J 0,000		21,89
	ΔH (m) 0,0		0.47
		GRAVEDAD	-3,47 O.K.

PI-24						
ρ (m)	0,50	S (m ²)	0,79	Longitud (36,00	
Q (I/s)	1.231,85	Pe (m)	3,14	Cota Tapa	23,40	
n	0,013	R (m)	0,25	Cota Fond	19,53	
		J	0,0026	Cota Lámi	20,69	
		ΔH (m)	0,10			
				CARGA	-2,71	O.K
PI-23						
ρ (m)	0,50	S (m ²)	0,79	Longitud (43,20	
Q (I/s)	1.231,85	Pe (m)	3,14	Cota Tapa	23,00	
n	0,013	R (m)	0,25	Cota Fond	19,74	
		J	0,0026	Cota Lámi	20,80	
		ΔH (m)	0,11			
				CARGA	-2,20	0.K
PI-22		2				
ρ (m)	0,50	S (m ²)	0,79	Longitud (43,20	
Q (I/s)	1.231,85	Pe (m)	3,14	Cota Tapa	22,50	
n	0,013	R (m)	0,25	Cota Fond	19,96	
		J	0,0026	Cota Lámi	20,91	
		ΔH (m)	0,11			
				GRAVEDAD	-1,59	O.K
PI-21		2				
ρ (m)	0,50	S (m ²)	0,79	Longitud (26,40	
Q (I/s)	1.231,85	Pe (m)	3,14	Cota Tapa	25,00	
n	0,013	R (m)	0,25	Cota Fond	20,86	
		J	0,0026	Cota Lámi	20,98	
		ΔH (m)	0,07	_		
				GRAVEDAD	-4,02	O.K
PI31		2				
ρ (m)	0,40	S (m ²)	0,50	Longitud (21,60	
Q (I/s)	412,02	Pe (m)	2,51	Cota Tapa	21,31	
n	0,013	R (m)	0,20	Cota Fond	18,92	
		J	0,0010	Cota Lámi	21,00	
		ΔH (m)	0,02			
PI30				CARGA	-0,31	O.K
	0.40	0 (2)	0.50	Land of the state	55.00	
ρ (m)	0,40	S (m ²)	0,50	Longitud (55,20	
Q (I/s)	826,05	Pe (m)	2,51	Cota Tapa	21,57	
n	0,013	R (m)	0,20	Cota Fond	19,19	
		J	0,0039	Cota Lámi	21,22	
		ΔH (m)	0,22	CARCA	0.25	0.10
				CARGA	-0,35	O.K

	Aliviadero Siejo				
Cota Tapa (m) 22.50 Cota Allvio (m) 13.88 Cota Allvio (m) 13.88 Cota Allvio (m) 15.75 Cota Allvio (m) 19.00 Cota Tapa (m) 22.31 Cota Fond (m) 14.02 Cota Fond (m) 14.02 Cota Fond (m) 19.00 Cota Allvio (m) 19.00 Cota Fond (m) 19.00 Cota	Aliviadero Siejo			Longitud Alivio (m)	6.00
Cola Food (m) 13.86 Cola Alvio (m) 19.76 Cola Alvio (m) 19.76 Cola Lamina (m) 19.00 Cola Lamina (m) 19.00 Cola Lamina (m) Cola Taga (m) 19.00 Cola Taga (m) Cola Taga (m) Cola Taga (m) Cola Taga (m) 19.00 Cola					
Cota Allvio (m)					
Pi-18					
Pi-18					
Pi-18				Cota Lamina (III)	19,00
Pi-18				_	-3.50 O.K.
Description	PI-18				0,00
Q(ts) 1,343,44 Pe (m) 3,14 Cota Tapa (m) 22.31 Quantity (m) 1,400		S (m ²)	0.79	Longitud (m)	0.00
R (m)					
Description					
PH-17	0,010				
Pet				Cota Lamina (m)	10,00
PHT		211 (III)	0,00	CARGA	-3.31 O.K
Description	PI-17				,,,,,
Description 1,343,44 Pe (m) 3,14 Pe (m) 0,25 Pe (m) 1,411 Cota Lamina (m) 19,07		S (m ²)	0.79	Longitud (m)	21 60
R (m)					
Description					
Pi-16					
Pi-16				oota zamma (m)	10,01
Pi-16		2()	0,07	CARGA	-0.40 O.K.
Description	PI-16				.,,,,
Q(Us) 1.343,44 Pe (m) 0.25 J 0.0031 AH (m) 0.26 Cota Tapa (m) 14.55 Cota Lamina (m) 19.33 Cota Tapa (m) 14.55 Cota Lamina (m) 19.33 Cota Tapa (m) 14.55 Cota Lamina (m) 19.33 Cota Tapa (m) 19.34 Cota Tapa (m) 19.42 Cota Tapa (m) 19.44 Cota Tapa (m) 19.45 Cota Tapa (m) 19.55 Cota Tapa (m) 19.45 Cot		S (m ²)	0.79	Longitud (m)	84 00
No. No					
D					
Pi-15	0,010				
Pi-15					
Pi-15 S S S S S S S S S		<u> </u>	٥,20	CARGA	-1.15 O.K
ρ(m) 0.50 Q(l/s) S(m²) 0.70 De (m) Longitud (m) 28.80 Cota Tapa (m) 20.18 20.80 Cota Fondo (m) 20.18 17.45 Cota Lamina (m) 20.20 17.54 Cota Lamina (m) 20.20 17.55 Cota Lamina (m) 20.20 18	PI-15			S.III.SA	
Q ((is) 1.343,44 n 0.013		S (m ²)	0.79	Longitud (m)	28.80
R (m)					
Description					
PI-14	0,010			Cota Lámina (m)	
Pi-14				Journal (III)	
Pi-14		<u> </u>	3,00	CARGA	-0.76 O.K
ρ (m)	PI-14			57111671	o,i o oii ti
Pe (m) 3.14 R (m) 0.25 J 0.0031 AH (m) 0.05 Cara Fapa = 20.64 Cota Fondo = 17.54 Cota Lamina = 19.47 O.K.		S (m ²)	0.79	Longitud =	14 40
R (m)					
Description					
Pi-13	0,010				
Pi-13				oota Earlina	10,11
Pi-13		Air (iii)	0,00	CARGA	-1 17 O K
ρ(m) 0,50 Q (i/s) S (m²) 0,79 Pe (m) Longitud (m) 24,00 Cota Tapa (m) 24,00 20,03 Cota Lámina (m) 24,00 20,03	PI-13			57111671	.,
Q (l/s) 1.343,44 R (m) 0.25 J 0.0031 Date		S (m ²)	0.79	Longitud (m)	24 00
R (m) 0.25 J 0.0031 Car Fondo (m) 17,66 Cota Lámina (m) 19,56 Cota Lámina (m) 19,57 Cota Lámina (m) 19,59 Car Tapa (m) 20,29 Cota Fondo (m) 17,73 Cota Lámina (m) 19,59 Car Tapa (m) 20,29 Cota Fondo (m) 17,73 Cota Lámina (m) 19,59 Car Lámina (m) 19,59 Car Lámina (m) 19,57 Cota Fondo (m) 17,73 Cota Lámina (m) 19,57 Cota Lámina (m) 19,57 Cota Fondo (m) 17,73 Cota Lámina (m) 19,57 Cota Lámina (m) 19,57 Cota Fondo (m) 17,73 Cota Lámina (m) 19,67 Cota Fondo (m) 17,68 Car Tapa (m) 20,00 Cota Tapa (m) 20,00 Cota Fondo (m) 19,67 Cota Lámina (m) 19,75 Cota Lámina (m) 19,75 Cota Lámina (m) 19,75 Cota Lámina (m) 19,75 Cota Tapa (m) 19,00 Cota Tapa (m) 19,76 Cota Tapa (m) 20,00 Cot					
J					
Pi-12	0,013				
Pi-12 Pi-13 Pi-14 Pi-15 Pi-15 Pi-16 Pi-				Cota Lamina (III)	13,54
Pi-12		Air (iii)	0,00	CARGA	-0.84 O.K
ρ(m) 0,50 Q (i/s) S (m²) 0,79 Pe (m) Longitud (m) 14,40 20cta Tapa (m) 14,40 20cta Tapa (m) 20,25 20cta Fondo (m) Cota Tapa (m) 20,25 20cta Fondo (m) CARGA -0,70 O.K. PI-11 pm (m) 0,50 Q (i/s) S (m²) 0.79 Pe (m) 0.79 Q (i/s) Longitud (m) 26,40 Cota Tapa (m) 20,05 Cota Fondo (m) 17,87 Cota Lámina (m) 20,05 Cota Fondo (m) 20,05 Cota Fondo (m) 17,87 Cota Lámina (m) 20,05 Cota Fondo (m) 0.79 Dota Fondo (m) 19,67 Cota Lámina (m) 0.60 Qota Fondo (m) 19,67 Dota Lámina (m) 0.60 Dota Fondo (m) 0.60 Dota Fo	PI-12			o, ii.o.	0,01
Q (l/s) 1.343,44 R (m) 0.25 J 0.0031 Cota Fondo (m) 17,73 Cota Lámina (m) 19,59		S (m ²)	0.79	Longitud (m)	14.40
R (m) 0.25 J 0.0031 Cota Fondo (m) 17,73 Cota Lámina (m) 19,59 CARGA -0,70 O.K.					
Description					
PI-11	0,010				
PI-11				Sold Editind (III)	.0,00
PI-11 ρ (m) 0,50 S (m²) 0,79 Longitud (m) 26,40 Q (Us) 1.343,44 Pe (m) 3,14 Cota Tapa (m) 20,05 R (m) 0.25 J 0,0031 Cota Fondo (m) 17,87 Cota Lámina (m) 19,67 Cota Lámina (m) 19,67 Pi-10-bis Pe (m) 3,14 Re (m) 0,25 Q (Ws) 1.343,44 R (m) 0,25 Cota Fondo (m) 18,00 Q (Ws) 1.343,44 R (m) 0,08 CARGA -0,25 O.K. PI-10 S (m²) 0.79 Cota Fondo (m) 19,75 O.K. PI-10 Pe (m) 3,14 Cota Tapa (m) 28,80 O.K. PI-10 Pe (m) 3,14 Cota Tapa (m) 28,80 O.K. PI-10 Pe (m) 3,14 Cota Tapa (m) 28,80 O.K. PI-10 Pe (m) 3,14 Cota Tapa (m) 19,90 Cota Tapa (m) 19,90 Q (Ws) 1.343,44		<u> </u>	3,00	CARGA	-0.70 O.K
ρ(m) 0,50 Q (l/s) S (m²) 0,79 Pe (m) Longitud (m) 26,40 Cota Tapa (m) 26,40 20,05 Cota Tapa (m) 26,40 20,00 20	PI-11			J.IIIJA	
Pe (m) 3.14 R (m) 0.25 J 0.0031 Longitud (m) 19.75 Pi-10-bis ρ (m) 0.0130 S (m²) 0.0031 ΔH (m) 0.08 Pi-10-bis ρ (m) 0.0130 R (m) 0.25 J 0.0031 ΔH (m) 0.08 Pi-10-bis ρ (m) 0.50 Carga (m) 26,40 Cota Tapa (m) 20.00 Cota Fondo (m) 18,00 Cota Lâmina (m) 19.75 Pi-10 ρ (m) 0.50 S (m²) 0.79 Cota Lâmina (m) 19.75 Cota Lâmina (m) 19.75 Pi-10 ρ (m) 0.50 S (m²) 0.79 Cota Lâmina (m) 19.76 Cota Tapa (m) 19.76 Pi-10 ρ (m) 0.50 S (m²) 0.79 Cota Tapa (m) 19.90 Cota Fondo (m) 18,14 Cota Lâmina (m) 19.76 Cota Fondo (m) 18,14 Cota Lâmina (m) 19.76 Cota Fondo		S (m ²)	0.79	Longitud (m)	26.40
R (m) 0.25 J 0.0031 Cota Fondo (m) 17,87 Cota Lámina (m) 19,67					
Description					
PI-10-bis	0,010				
Pi-10-bis Pi-				()	
PI-10-bis Def		(/	-,	CARGA	-0.38 O.K.
ρ (m) 0,50 Pe (m) S (m²) 0.79 Pe (m) Longitud (m) 26,40 Cota Tapa (m) 20,00 20,00 Cota Tapa (m) 26,40 20,00 Cota Tapa (m) 20,00 20,00 Cota Fondo (m) 18,00 19,75 PI-10 P (m) 0.50 Q (l/s) S (m²) 0.79 Pe (m) Longitud (m) 28,80 Cota Lámina (m) O.K. Pe (m) 3,14 R (m) Cota Tapa (m) 19,90 Cota Fondo (m) 18,14 Cota Lámina (m) N.K. PI-9 p (m) 0,50 Q (l/s) S (m²) 0,79 Q (m) CARGA -0,14 O.K. PI-9 p (m) 0,031 Q (l/s) S (m²) 0,79 Q (m) Longitud (m) 21,60 Cota Tapa (m) 20,36 Cota Tapa (m) 20,36 Cota Fondo (m) 18,25 Cota Lámina (m) 19,83 Cota Lámina (m) 19,83	PI-10-bis			J.III.JA	
Pe (m) 3,14 R (m) 0,25 J 0,0031 ΔH (m) 0,25 J 0,0031 ΔH (m) 0,25 J 0,0031 ΔH (m) 0,008 Car Fondo (m) 18,00 Cota Lámina (m) 19,75 CARGA -0,25 O.K. Cota Lámina (m) 19,75 Car Tapa (m) 20,00 Cota Lámina (m) 19,75 Car Tapa (m) 19,90 Cota Tapa (m) 19,90 Cota Tapa (m) 19,90 Cota Lámina (m) 19,76 Cota Tapa (m) 20,00 Cota Tapa (S (m ²)	0.79	Longitud (m)	26.40
R (m) 0.25 J 0.0031 Car Fondo (m) 18.00 Cota Lámina (m) 19.75 O.K. PI-10					
Description					
PI-10	0,0100	()	-,		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				CARGA	-0.25 O.K.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PI-10			J.III.JA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		S (m ²)	0.79	Longitud (m)	28.80
R (m) 0.25 Cota Fondo (m) 18,14 Cota Lámina (m) 19,76 Cota Lámina (m) 19,81 Cota Tapa (m) 20,36 Cota Fondo (m) 18,25 Cota Fondo (m) 19,83 Cota Lámina (m) 19,83 Cota					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Description	0,0130				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Sola Lanina (III)	.5,10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Δi 1 (iii)	3,00	CARGA	-0.14 O.K
ρ (m) 0,50 S (m²) 0,79 Longitud (m) 21,60 Q (l/s) 1.343,44 Pe (m) 3,14 Cota Tapa (m) 20,36 n 0,0130 R (m) 0,25 Cota Fondo (m) 18,25 J 0,0031 Cota Lámina (m) 19,83	PI-9			OAROA	J, 1 . J. N.
Q (l/s) 1.343,44 Pe (m) 3.14 Cota Tapa (m) 20,36 n 0,0130 J 0,0031 ΔH (m) 0.25 Cota Fondo (m) 19,83 Cota Lámina (m) 19,83		S (m ²)	0.79	Longitud (m)	21.60
n 0,0130 R (m) 0.25 Cota Fondo (m) 18.25 J 0,0031 Cota Lámina (m) 19.83	V(III) 4				
J 0,0031 Cota Lámina (m) 19,83 ΔH (m) 0,07	O (I/s) 1 3/3 //				
ΔH (m) 0,07		D (m)			
CAILUA T -0,00 U.N.		J 0	,0031		
		J 0	,0031	Cota Lámina (m)	19,83

Aliviadero Final			
		Longitud Alivio (m) 2,00	
		Cota Tapa (m) 31,10	
		Cota Fondo (m) 23,19	
		Cota Alivio (m) 25,25	
		Cota Lámina (m) 25,70	
		5.40	0.16
P3-11		-5,40	O.K.
ρ (m) 0,40	S (m ²) 0,50	Longitud (m) 0,00	
Q (l/s) 809,26	Pe (m) 2,51	Cota Tapa (m) 31,37	
n 0,013	R (m) 0,20	Cota Fondo (m) 23,14	
0,010	J 0,0037	Cota Lámina (m) 25,70	
	ΔH (m) 0,00	20,10	
	2,00	CARGA -5,67	O.K.
P3-10	2. 2.		
ρ (m) 0,40	S (m ²) 0,50	Longitud (m) 69,60	
Q (I/s) 809,26	Pe (m) 2,51	Cota Tapa (m) 31,45	
n 0,013	R (m) 0,20	Cota Fondo (m) 23,49	
	J 0,0037	Cota Lámina (m) 25,96	
	ΔH (m) 0,26	CARGA -5,49	O.K.
P3-9		United 5,43	0.14.
ρ (m) 0,40	S (m ²) 0,50	Longitud (m) 43,20	
Q (l/s) 809,26	Pe (m) 2,51	Cota Tapa (m) 32,03	
n 0,013	R (m) 0,20	Cota Fondo (m) 23,70	
	J 0,0037	Cota Lámina (m) 26,12	
	ΔH (m) 0,16		
P3-8		CARGA -5,91	O.K.
ρ (m) 0,40	S (m ²) 0,50	Longitud (m) 90,00	
		Cota Tapa (m) 31,46	
Q (l/s) 809,26 n 0,013	Pe (m) 2,51 R (m) 0,20	Cota Fondo (m) 23,88	
0,013	J 0,0037	Cota Lámina (m) 26,46	
	ΔH (m) 0,34	20,40	
	. , , , , , , , , , , , , , , , , , , ,	CARGA -5,00	O.K.
P3-7			
ρ (m) 0,40	S (m ²) 0,50	Longitud = 49,20	
Q (l/s) 809,26	Pe (m) 2,51	Cota Tapa = 27,24	
n 0,013	R (m) 0,20	Cota Fondo= 24,40	
1	J 0,0037	Cota Lámina = 26,64	
	ΔH (m) 0,18	01001	0.16
P3-6		CARGA -0,60	O.K.
ρ (m) 0,40	S (m ²) 0,50	Longitud (m) 57,60	
Q (l/s) 809,26	Pe (m) 2,51	Cota Tapa (m) 27,17	
n 0.013	R (m) 0,20	Cota Fondo (m) 24,69	
0,010	J 0,0037	Cota Lámina (m) 26,86	
	ΔH (m) 0,22		
		CARGA -0,31	O.K.
P3-5	0.50	04.00	
ρ (m) 0,40	S (m ²) 0,50	Longitud (m) 81,60	
Q (l/s) 809,26	Pe (m) 2,51	Cota Tapa (m) 31,06	
n 0,013	R (m) 0,20	Cota Fondo (m) 25,00	
	J 0,0037 ΔH (m) 0,31	Cota Lámina (m) 27,17	
	의 (III) U,3 I	CARGA -3,89	0.K.
P3-4		<u> </u>	J
ρ (m) 0,40	S (m ²) 0,50	Longitud (m) 36,00	
Q (l/s) 809,26	Pe (m) 2,51	Cota Tapa (m) 31,26	
n 0,013	R (m) 0,20	Cota Fondo (m) 25,28	
	J 0,0037	Cota Lámina (m) 27,30	
	ΔH (m) 0,13		
D2 2		CARGA -3,96	0.K.
P3-3	C (m ²)	Longitud (m)	
ρ (m) 0,40	S (m ²) 0,50	Longitud (m) 43,20	
Q (l/s) 809,26 n 0,0130	Pe (m) 2,51	Cota Tapa (m) 30,57 Cota Fondo (m) 25,49	
n 0,0130	R (m) 0,20 J 0,0037		
	ΔH (m) 0,0037	Cota Lámina (m) 27,46	
	<u> </u>	CARGA -3,11	O.K.
P3-2			
ρ (m) 0,40	S (m ²) 0,50	Longitud (m) 86,40	
Q (l/s) 809,26	Pe (m) 2,51	Cota Tapa (m) 29,94	
n 0,0130	R (m) 0,20	Cota Fondo (m) 25,92	
	J 0,0037	Cota Lámina (m) 27,62	
	ΔH (m) 0,32	CARCA	0.16
P2-4		CARGA -2,31	O.K.
ρ (m) 0,40	S (m ²) 0,50	Longitud (m) 52,80	
Q (l/s) 809,26	Pe (m) 2,51	Cota Tapa (m) 27,85	
n 0,0130	R (m) 0,20	Cota Fondo (m) 26,19	
-,	J 0,0037	Cota Lámina (m) 27,82	
1		, , , , , , , , , , , , , , , , , , , ,	
	ΔH (m) 0,20		
	ΔH (m) 0,20	CARGA -0,03	O.K.

P5-14				
ρ (m)	0,50	S (m ²)	0,79	Longitud (50,20
Q (l/s)	916,43 0,013	Pe (m)	3,14 0,25	Cota Tapa 26,78
n	0,013	R (m)	0,0015	Cota Fond 23,25 Cota Lám 25,77
		ΔH (m)	0,07	Cota Earn 20,77
				CARGA -1,01 O.K.
P5-13				
ρ (m)	0,50	S (m ²)	0,79	Longitud (33,60
Q (l/s)	916,43	Pe (m)	3,14	Cota Tapa 27,08
n	0,013	R (m)	0,25	Cota Fond 23,33
		J ΔH (m)	0,0015 0,05	Cota Lám 25,82
		ΔΠ (Π)	0,00	CARGA -1,26 O.K.
P5-12				CARCA 1,20 C.R.
ρ (m)	0,50	S (m ²)	0,79	Longitud (55,20
Q (I/s)	916,43	Pe (m)	3,14	Cota Tapa 26,00
n	0,013	R (m)	0,25	Cota Fond 23,45
			0,0015	Cota Lám 25,90
		ΔH (m)	0,08	CARGA -0,10 O.K.
P5-11				CARGA -0,10 O.K.
ρ (m)	0,60	S (m ²)	1,13	Longitud (26,40
Q (I/s)	916,43	Pe (m)	3,77	Cota Tapa 26,23
n	0,013	R (m)	0,30	Cota Fond 23,51
			0,0006	Cota Lám 25,92
		ΔH (m)	0,01	<u> </u>
				CARGA -0,31 O.K.
P5-10	0.50	0 (- 2)	0.70	Learning Co. Co.
ρ (m) Ο (l/e)	0,50	S (m ²)	0,79	Longitud = 88,80 Cota Tapa 27,43
Q (l/s)	916,43 0,013	Pe (m) R (m)	3,14 0,25	Cota Tapa 27,43 Cota Fond 23,71
	0,010		0,0015	Cota Lám 26,05
1		ΔH (m)	0,13	20,00
				CARGA -1,38 O.K.
P5-9				
ρ (m)	0,50	S (m ²)	0,79	Longitud (55,20
Q (I/s)	916,43	Pe (m)	3,14	Cota Tapa 26,23
n	0,013	R (m)	0,25	Cota Fond 23,83
		J ΔH (m)	0,0015	Cota Lám 26,13
		ΔΠ (III)	0,00	CARGA -0,10 O.K.
P5-8				-,-
ρ (m)	0,50	S (m ²)	0,79	Longitud (33,60
Q (I/s)	916,43	Pe (m)	3,14	Cota Tapa 26,30
n	0,013	R (m)	0,25	Cota Fond 23,90
			0,0015	Cota Lám 26,18
		ΔH (m)	0,05	CARGA -0,12 O.K.
P5-7				CARGA -0,12 O.K.
ρ (m)	0,50	S (m ²)	0,79	Longitud (64,80
Q (l/s)	916,43	Pe (m)	3,14	Cota Tapa 26,45
n	0,013	R (m)	0,25	Cota Fond 24,05
			0,0015	Cota Lám 26,27
		ΔH (m)	0,09	
				CARGA -0,18 O.K.
P5-6	0.50	2 (2)	0.00	
ρ (m)	0,50 916,43	S (m²) Pe (m)	0,79	Longitud (64,80 Cota Tapa 27,13
Q (l/s)	0,0130	R (m)	3,14 0,25	Cota Tapa 27,13 Cota Fond 24,19
	0,0100		0,0015	Cota Lám 26,37
		ΔH (m)	0,09	
				CARGA -0,76 O.K.
P5-5				
ρ (m)	0,35	S (m ²)	0,38	Longitud (52,80
Q (l/s)	916,43	Pe (m)	2,20	Cota Tapa 27,46
n	0,0130	R (m)	0,18	Cota Fond 25,12
		ΔH (m)	0,0098 0,52	Cota Lám 26,79
1		(···)	-,02	CARGA -0,67 O.K.
P5-4				
ρ (m)	0,35	S (m ²)	0,38	Longitud (45,60
Q (I/s)	916,43	Pe (m)	2,20	Cota Tapa 28,02
n	0,0130	R (m)	0,18	Cota Fond 25,72
			0,0098	Cota Lám 27,24
1		ΔH (m)	0,45	CARGA -0,78 O.K.
P5-3				-0,78 O.K.
ρ (m)	0,35	S (m ²)	0,38	Longitud (38,40
Q (l/s)	916,43	Pe (m)	2,20	Cota Tapa 28,42
n	0,0130	R (m)	0,18	Cota Fond 26,20
	_	J	0,0098	Cota Lám 27,61
		ΔH (m)	0,38	01001
DE 2				CARGA -0,81 O.K.
P5-2	0,35	S (m ²)	0.38	Longitud (33,60
ρ (m) Q (l/s)	916,43	S (m²) Pe (m)	0,38 2,20	Longitud (33,60 Cota Tapa 28,92
n (I/S)	0,0130	R (m)	0,18	Cota Fond 26,62
			0,0098	Cota Lám 27,94
		ΔH (m)	0,33	
				CARGA -0,98 O.K.
P5-1	2.25	2 (2)		
ρ (m)	0,35	S (m ²)	0,38	Longitud (45,60
Q (l/s) n	916,43 0,0130	Pe (m) R (m)	2,20 0,18	Cota Tapa 28,69 Cota Fond 27,19
	3,3700		0,0098	Cota Lám 28,39
1		ΔH (m)	0,45	
				CARGA -0,30 O.K.